
CIS2400 Midterm Exam Solutions

Travis McGaha & Joel Ramirez
CIS2400

Fall 2024

This is a closed calculator/computer exam. You may consult one double-sided sheet of notes. No other
references are allowed.

If you provide an incorrect answer, any explanation about how you arrived at your solution may lead to
partial credit.

Full Name [print]:

PennID:

Exam Details & Instructions

• The exam consists of 5 questions (and a short bonus 6th question) worth 100 points total.

• You have 90 minutes to complete the exam.

• Two reference sheets will be provided. Do not write answers on them; they will not be graded.

• The exam is closed book. No textbooks, phones, laptops, wearable devices, or any other electronics are
allowed beyond the permitted notes.

• You may use one 8.5” x 11” double-sided sheet of paper for notes.

• Turn off and put away all electronic devices and noise-making items.

• Remove all hats, headphones, and watches.

Pledge: I neither cheated nor helped anyone else cheat on this exam. All answers are my own. Violating this
pledge may result in a failing grade.

Sign Here:

Advice

• There are 5 questions (with 11 parts total). Budget your time to complete all of them.

• Don’t worry if there is more space than you need for answers. Extra space is provided just in case.

• Take a deep breath and relax. A bad grade on this exam is not the end of the world. You can improve
your score with the Midterm ”Clobber” Policy (see the course syllabus).

Please initial or write your PennID on each page to ensure they can be matched if they become separated.

The last page is blank for extra space. If you use it, indicate clearly where your answer continues and include
your full name and PennID at the top.



Initial/PennID:

1 Memory Diagram and Structs [12 Points]

Consider the following struct definitions, which define a student struct containing the student’s ID number,
height, and enrolled classes:

typedef struct {
int feet;
int inches;

} height_t;

typedef struct student_st {
int id_number;

height_t height;

size_t num_classes;

int* classes;

} student;

student create_travis() {

student travis; // line 1

// line 2

travis.id_number = 2030; // line 3

// line 4

travis.height.feet = 5; // line 5

travis.height.inches = 11; // line 6

// line 7

travis.num_classes = 2; // line 8

int course_nums[] = {2400, 2620}; // line 9

travis.classes = course_nums; // line 10

// line 11

return travis; // line 12

}

If we had a main function that called create travis() and printed the result:

int main() {
student travis = create_travis();

// various print statements would go here

}

We might expect the following output:

travis {

id_number = 2030

height {

.feet = 5

.inches = 11

}

num_classes = 2

classes = {2400, 2620}

}

Problem continues onto the next page

Page 2



Initial/PennID:

Interpretation

However, if we actually printed the result of create travis(), the output would not match the expected
result. What would be wrong with the printed output and why?

// You don’t need to use all of this space

Solution. The issue with the printed result of create travis() arises because the variable
course nums is defined within thecreate travis function. When the function returns, thecourse nums
array goes out of scope as it exists within the stack memory of that function call. This means that the
memory it occupies could be reused, leading to undefined behavior. Specifically, the classes pointer
in travis will point to an invalid memory location once the function exits, causing the program to
print unintended values or potentially crash.

Page 3



Initial/PennID:

2 Hamming Weight Calculation Using Bit Manipulations [12 Points]

Write a function in C that calculates and returns the amount of 1 bits (the Hamming weight) in the binary
representation of an unsigned integer.

Assume that an unsigned int is 32 bits.

For example, if the input was 0xFFFFFFFF (all 1’s) then 32 should be returned.

If the input was 7 (0000 0000 [20 more 0’s]... 0111) then the function should return 3.

Solution. To calculate the Hamming weight (number of 1’s) in the binary representation of an unsigned
integer, we can repeatedly check the least significant bit, add it to our count, and then right-shift the
integer by one position.

unsigned int hamming_weight(unsigned int x) {
unsigned int count = 0;
while (x > 0) {

count += (x & 1);

x >>= 1;

}

return count;
}

Page 4



Initial/PennID:

3 Two’s Complement Galore [17 Points]

You are given the following two 8-bit hexadecimal numbers which are declared as chars:

A = 0xEB, B = 0x3E

For convenience, the range of signed chars is from −128 to 127.

(a) Interpretation [3 Points]

Convert both A and B from hexadecimal to binary. Clearly label each.

Solution.

A = 0xEB in binary is 1110 1011.

B = 0x3E in binary is 0011 1110.

(b) Addition [6 Points]

We want to take the two chars A and B from the previous part, add them together and store the result in
another char variable. E.g.

char sum = A + B;

Compute the resulting character sum that we get from adding A and B using two’s complement arithmetic.
Use your results from part (a) and show your steps for the binary addition, carry’s, etc. Clearly label the bits
that would make up the char sum .

Solution.

Align the binary values of A and B and perform binary addition bit by bit, from right to left, carrying
over any extra 1’s.

11101011
+00111110
100101001

The result is 1 0001 1001 in binary, but we only have 8 bits, so 0b00101001 is the final answer. Other
representations of this answer are 0x29 and 41.

Page 5



Initial/PennID:

Assume your system supports 4 bit signed numbers who’s type is called a half char. You are given the
following two 4-bit binary numbers declared as half chars.

C = 0b1011, D = 0b0110

(c) Casting from half char to char [8 Points]

Now, assume you want to cast these two signed half chars, C and D, to chars (which we’ll assume are 8
bits in size). When casting from 4-bits half char to a 8-bits char, the system will copy the four bits into
the bottom four bits of the result and then ”fill in” the upper 4 bits.

half char C = 0b1011
char full_C = (char) C;
// full_c will be 0b XXXX 1011. Note the bottom four bits are the same as the original.

// We leave the value of the upper 4 bits hidden since

// you need to figure that out for this question.

When filling in the upper 4-bits, it needs to make sure that the decimal value remains the same in two’s
complement form whether it is 4-bits or 8-bits.

What should the 8-bit binary representation be after this cast of C and D? In other words, what should the
upper 4 bits be filled with for C and D respectively. Please justify your answer.

Solution. When casting from a 4-bit signed half char to an 8-bit char, we must extend the sign bit
to ensure that the value remains the same in two’s complement form. This process is known as sign
extension. In sign extension, the upper bits of the new, larger type are filled with copies of the sign bit
(the leftmost bit of the original binary number) to preserve the original number’s value and sign. This
lines up with what we’ve learned in RISC-V and the difference between the instructions ls and lsu.

To extend each 4-bit number to 8 bits:

• For C = 0b1011 (negative): - The leftmost bit is 1, so we fill the upper 4 bits with 1’s to preserve
the negative value. - This gives us C in 8-bit form: 1111 1011.

• For D = 0b0110 (non-negative): - The leftmost bit is 0, so we fill the upper 4 bits with 0’s to
maintain the non-negative value. - This gives us D in 8-bit form: 0000 0110.

The 8-bit binary representations after casting are:

C = 1111 1011, D = 0000 0110

Page 6



Initial/PennID:

4 Dynamic Array Implementation in C [23 Points]

In this question, you will implement a dynamic array (vector) structure in C. Below is the definition of a
vector struct, along with some partially implemented functions.

typedef struct vec_st {
int* data; // Inner array that the vector manages.

size_t len; // Number of elements currently stored in the vector.

size_t capacity; // Maximum number of elements the inner array can hold before resizing.

} vec;

A vector is a type of ”list” data structure that maintains an underlying array. When an element is added to the
vector, it is added to the end of the underlying array. If the we needed to add more elements to the vector but
have run out of space, we resize its underlying array by doubling the capacity of the array. After, we add the
new element.

For example, this vector has a capacity of three but only contains 2 integers.

If we push 2400 onto the end of the vector via vec push(&v, 2400), then the last box on the right with a /
(in the figure above) now holds the value 2400. len is updated to 3 while capacity stays the same.

If we push another value, 3800, onto the end of our vector, we would need to resize the array to support
holding more elements. We double the size of our array when we need to resize so len is updated to 4 while
capacity is increased to 6. This results in the following:

Problem continues onto the next page

Page 7



Initial/PennID:

Below are three core functions that are used to manage the vector.

// Creates a new vector with a specified initial capacity.

// Assume the initial capacity is greater than 0.

vec vec_new(size_t initial_capacity) {
vec result;

result.data = malloc(sizeof(int) * initial_capacity);
result.len = 0;

result.capacity = initial_capacity;

return result;
}

// Gets the integer value stored at the specified index in the vector.

// This operation does not change the length or capacity of the vector.

int vec_get(vec* this, size_t index) {
return this->data[index];

}

// Sets the integer value at the specified index to a new value.

// This operation does not change the length or capacity of the vector.

void vec_set(vec* this, size_t index, int element) {
this->data[index] = element;

}

You do not need to read this code, but we provide it as a reference in-case it helps understand how one
would use a vector. If you are comfortable with the idea of what a vector is, then feel free to move on to
the next page (where the problem continues)

int main() {
vec v = vec_new(3); // Create a new vector with an initial capacity of 3.

vec_push(&v, 1600);

vec_push(&v, 1200);

vec_push(&v, 2400);

// v.len should be 3 (three elements have been added).

// v.capacity should still be 3 (it has not been resized yet).

vec_push(&v, 3800);

// v.len should be 4 (a new element was added).

// v.capacity should be 6 (the vector resized to double its capacity).

vec_set(&v, 0, 1100); // Set the value at index 0 to 1100.

for (size_t i = 0; i < v.len; i++) { // Loop through and print all values in the vector.
printf("%d\n", vec_get(&v, i));

}

free(v.data); // Free the memory allocated for the vector.

}

Page 8



Initial/PennID:

(a) Implement the vec push function [15 Points]

The vec push function adds a new element to the end of the vector. If the vector’s internal array does not
have enough capacity, then the array is resized with double the capacity before adding the new element.
Implement this function in C. You are not allowed to use realloc. You may assume functions like malloc
always succeeds and that this is a valid vector.

Solution.

void vec_push(vec* this, int element) {
if (this->len == this->capacity) {

size_t new_capacity = this->capacity * 2;
int* new_data = malloc(new_capacity * sizeof(int));
for (size_t i = 0; i < this->len; i++) {

new_data[i] = this->data[i];

}

free(this->data);

this->data = new_data;

this->capacity = new_capacity;

}

this->data[this->len++] = element;

}

We also noticed other students who created this function using the other methods

in the problem. These were accepted as correct solutions. Here is one possible

solution.

Solution.

void vec_push(vec* this, int element) {
if (this->len == this->capacity) {

// Create a new vector with double the current capacity

vec new_vec = vec_new(this->capacity * 2);

// Copy elements from the old array to the new array using vec_get and vec_set

for (size_t i = 0; i < this->len; i++) {
vec_set(&new_vec, i, vec_get(this, i));

}

// Free the old array and update the vector's data and capacity
free(this->data);

this->data = new_vec.data;

this->capacity = new_vec.capacity;

}

// Set the new element at the next available position

vec_set(this, this->len++, element);

}

Page 9



Initial/PennID:

(b) Pointer Passing [8 Points]

The vec get function currently takes a pointer to a vec structure. Could this function be rewritten to take
the vector by value (i.e., vec instead of vec *) and still behave correctly? Justify your answer.

// You do not need to use all of this space

Solution. If we pass vec by value in the vec get function, the vec structure itself is copied, but this
copies everything such as len, capacity, and the data pointer. Importantly, the data pointer within
the structure still points to the original array in memory where the elements are stored so we can still
retrieve values within the correct array.

Page 10



Initial/PennID:

5 Bit Error Detection [35 Points]

You are given a 3-bit sequence, 𝐼2𝐼1𝐼0, where 𝐼2 is a parity bit used to verify whether the number of 1s in the
last two bits, (𝐼1 and 𝐼0), is even or odd.

The rules for interpreting the parity bits are as follows for valid sequences:

• If 𝐼2 is 0, the number of 1s in 𝐼1𝐼0 should be even (0 counts as even in this case).

• If 𝐼2 is 1, the number of 1s in 𝐼1𝐼0 should be odd.

If the sequence does not follow the rules described above, it is considered an invalid sequence of bits. (An
example of an invalid sequence is 111).

(a) Logic Expression [5 Points]

Write a boolean logic expression that checks the validity of the 3-bit sequence. The expression should
evaluate to true if the sequence is valid, false otherwise. Do not use ∩ or ∪ notation nor code.

Solution.
∼ (𝐼2 ˆ𝐼1 ˆ𝐼0)

There are of course much longer solutions that we accepted. But this was the shortest possible.

(b) Detecting Errors Using Logic Gates [10 Points]

Based on your expression in part (a), create a gate-level logic circuit that takes in 𝐼0, 𝐼1, and 𝐼2 and outputs 1
if the sequence is valid, 0 otherwise.

Solution.

You could use a negated XOR gate as the final gate, but here is a more detailed solution. Many different
approaches would have received credit.

Page 11



Initial/PennID:

(c) CMOS [10 Points]

Design a proper CMOS circuit which takes in all 3 bits of the input I and produces the output bit. You can
assume that you also have access to negated versions of all of the input bits. Your solution must be a single
CMOS circuit consisting of complementary pull up and pull down transistor networks. It should not involve
cascading multiple CMOS circuits. Please label the inputs and outputs of your circuit clearly on your
schematic.

Solution. Although our solution from part A is concise, it doesn’t allow for straightforward ”xor”
blocks at the CMOS level, based on our current knowledge of CMOS design. Therefore, we’ll need
to use a version of part A that relies solely on OR, AND, and NOT gates to implement the solution
in CMOS. We can adopt a quasi-PLA form for the Pull-Down Network (PDN) and then translate it
directly into the Pull-Up Network (PUN).

First, let’s determine the expression for when the PDN allows a signal to pass through. In other words,
we need to identify the conditions that produce an invalid sequence of bits.

(𝐼2 & 𝐼1 & 𝐼0) | (𝐼2 &¬𝐼1 &¬𝐼0) | (¬𝐼2 & 𝐼1 &¬𝐼0) | (¬𝐼2 &¬𝐼1 & 𝐼0)

From this, we can see an immediate relationship with the PUN’s corresponding boolean expression.

(¬𝐼2 | ¬𝐼1 | ¬𝐼0) & (¬𝐼2 | 𝐼1 | 𝐼0) & (𝐼2 | ¬𝐼1 | 𝐼0) & (𝐼2 | 𝐼1 | ¬𝐼0)

And finally, here is the entire network.

Page 12



Initial/PennID:

Page 13



Initial/PennID:

(d) Error Handling with a Multiplexer [10 Points]

Let’s decide how to handle data transmission based on the result of the error detection logic circuit. The
system must meet the following conditions:

• If no error is detected, the original 3-bit data should be output.

• If an error is detected, output a sequence of 1s (e.g., 111).

Draw a logic circuit diagram using a multiplexer (MUX) and any necessary logic gates to select between
transmitting the original 3-bit data or the error signal based on the conditions described above. You may
assume you have access to the solution from part (b) as a box labeled ”B” in your diagram.

Solution. And, finally, the last diagram of the midterm.

Page 14



Initial/PennID:

6 Bonus Question [1 Point: all submissions will get this 1 point]

Put anything you’d like the course staff to see here. This can be nothing, a piece of art, a message to members
of the staff, anything you like! If you can’t come up with anything, then a suggestion would be to write down
your favorite aspect(s)/topic(s) of the course so far!

Solution.

Page 15



Initial/PennID:

Scratch Work Page

Page 16


	Memory Diagram and Structs [12 Points]
	Hamming Weight Calculation Using Bit Manipulations [12 Points]
	Two’s Complement Galore [17 Points]
	Dynamic Array Implementation in C [23 Points]
	Bit Error Detection [35 Points]
	Bonus Question [1 Point: all submissions will get this 1 point]

