
CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

C Programming
Computer Operating Systems, Spring 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll: how are you?

❖ What questions do you have for me?

2

pollev.com/tqm

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Administrivia (pt. 1)

❖ HW00 Posted

▪ Should have everything you need after this lecture

▪ Autograder Posted over the weekend

▪ Due: Friday 9/6 @ Midnight

▪ Start ASAP since you need to setup the environment

▪ Short HW00 Demo in a second

❖ Survey00: Pre-semester Survey

▪ Anonymous Survey, live now

▪ On Canvas (So that it can be anonymous)

▪ Due Wednesday 9/11 @ midnight

3

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Administrivia (pt. 2)

❖ Check-in 00

▪ Short questions about C

▪ Due before lecture on Tuesday

▪ Releases tonight or sometime tomorrow

▪ Will be on gradescope

4

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

HW00 Demo

❖ Demonstrate how to run it

❖ Compiling it is something you need to figure out

❖ clang-15 is the compiler you should use for the
assignment

▪ If it is not installed, try running this in the terminal:
apt-get install -y clang-15

5

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Website & Infra Demo

❖ Website: https://www.seas.upenn.edu/~cis2400/current/

❖ Canvas site: https://canvas.upenn.edu/courses/1811752

❖ Docker: see setup doc on course website

6

https://www.seas.upenn.edu/~cis2400/current/
https://canvas.upenn.edu/courses/1811752

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Lecture Outline

❖ C Intro

▪ Cont. from last time:

• Arrays

• Command line args

▪ Pointers

• Box & Arrow Diagrams

• Arrays vs pointers

• C Strings

▪ Structs

▪ The Stack & Pass-by-value

▪ More on Compiling

7

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Sample C program: sum evens

8

#include <stdio.h>

#include <stdlib.h>

int sum_evens(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 if (i % 2 == 0) {

 sum += i;

 }

 }

 return sum;

}

int main() {

 int sum = sum_evens(5);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

Function declarations &
parameters

Variables local to the
function

For loops & if statements look similar

Print statements are different to format output. This replaces
%d with the value of sum, more later in lecture

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Another Similarity: Scope

❖ Variables declared inside of a function are local to that
function and are not visible outside of that scope.

❖ Variables can also be declared outside of a function –
these variables typically have global scope but there are
some subtleties

9

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

C vs Java Similarities Overview

❖ C and Java are very similar syntactically

❖ Similarities:

▪ Control Structures (if/else/for/while/…)

▪ Variables and data types (int/char/float/double/…)

▪ Arrays and strings exist in both
(but are also different implementation wise)

▪ Statements & Expressions
x = (y + z) / 2

10

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

C vs Java

❖ C and Java are Syntactically Similar, but …

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

❖ From my experience, a common source for making
mistakes in C is forgetting that things are not like Java

11

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

C vs Java: Differences

❖ C is functionally very different than Java

❖ Some differences:

▪ C doesn’t default initialize anything

▪ C doesn’t have objects

▪ C compiles down to machine code

▪ C runs really fast

▪ C doesn’t check much in terms of safety, no nice error messages
like Java has

▪ C is “just above” assembly in terms of abstraction

▪ C allows for direct memory access

▪ Java has implicit references, C is explicit with pointers

12
More on this in a second

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Arrays

❖ Definition: type name[size]

▪ Allocates size contiguous elements of type type

▪ Normal usage is a compile-time constant for size
(e.g. int scores[5];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable
or hard-code it in

13

type name[size]

value 10 9 9 9 10

== Random values

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be

used as an assignment target or as a value in an expression

▪ The array name cannot be assigned to / changed

14

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

15

int sumAll(int a[]) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Solution: Pass Size as Parameter

16

int sumAll(int[] a, int size) {

 int i, sum = 0;

 for (i = 0; i < size; i++) {

 sum += a[i];

 }

 return sum;

}

❖ Standard idiom in C programs

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

C command line args

❖ argc is the number of arguments given to the
program.

▪ The name of the program is counts as an argument.

❖ argv is an array of char*’s (strings) that are the
arguments

▪ The name of the program is the first argument.

17

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 for (int i = 0; i < argc; i++) {

 printf("%s\n", argv[i]);

 }

 return EXIT_SUCCESS;

}

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

C command line args [Live Demo]

❖ Let’s see an example…

❖ Note how everything arg is a string, will need to do
conversion to other types if you want that.

18

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 for (int i = 0; i < argc; i++) {

 printf("%s\n", argv[i]);

 }

 return EXIT_SUCCESS;

}

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Lecture Outline

❖ C Intro

▪ Cont. from last time:

• Arrays

• Command line args

▪ Pointers

• Box & Arrow Diagrams

• Arrays vs pointers

• C Strings

▪ Structs

▪ The Stack & Pass-by-value

▪ More on Compiling

19

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Pointers

❖ Variables that are explicit “references”

▪ Holds the location to some data in computer memory

▪ Must specify a type so the data being referred to can be
interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can refer to an int

• Trying to access that data at that address will treat the data there as
an int

20

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY

IMPORTANT IN C

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the data

▪ Example:

❖ Get the “reference” of a variable with &

▪ &foo gets a “reference” to foo in memory

▪ Example:

21

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 240;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

22

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

23

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

a ???

b ???

c ???

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

24

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

a ???

b ???

c ???

ptr ???

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

25

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

a 5

b ???

c ???

ptr ???

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

26

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

a 5

b 3

c ???

ptr ???

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

27

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

a 5

b 3

c ???

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

28

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

a 7

b 3

c ???

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Box and Arrow Diagrams

❖ Really Really Really useful thing to visualize C code is to
draw diagrams with boxes and arrows to visualize what is
going on.

29

int main(int argc, char* argv[]) {

 int a, b, c;

 int* ptr;

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Red arrow is the
next line to execute

a 7

b 3

c 10

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll: how are you?

❖ What does this program print?

30

pollev.com/tqm

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *ptr = &x;

*ptr = z * *ptr;

z = 4;

ptr = &z;

y = *ptr + 2;

printf("%d %d %d \n", x, y, z);

 return 0;

}

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

31

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *ptr = &x;

*ptr = z * *ptr;

z = 4;

ptr = &z;

y = *ptr + 2;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 3

y 10

z 2

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

32

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *ptr = &x;

*ptr = z * *ptr;

z = 4;

ptr = &z;

y = *ptr + 2;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 6

y 10

z 2

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

33

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *ptr = &x;

*ptr = z * *ptr;

z = 4;

ptr = &z;

y = *ptr + 2;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 6

y 10

z 4

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

34

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *ptr = &x;

*ptr = z * *ptr;

z = 4;

ptr = &z;

y = *ptr + 2;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 6

y 10

z 4

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

35

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *ptr = &x;

*ptr = z * *ptr;

z = 4;

ptr = &z;

y = *ptr + 2;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 6

y 6

z 4

ptr

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Pointers to Pointers to Pointers to Pointers

❖ You can have pointers to pointers:

❖ A pointer to a pointer to an int:

❖ Can dereference more than one at a time:

▪ Deference's twice:

❖ Can have pointers to pointers to pointers to pointers to
pointers…

36

int x = 3;

int *ptr = &x;

int **ptr_ptr = &ptr;

**ptr = 3;

int ********************ptr;

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll: how are you?

❖ What does this program print?

37

pollev.com/tqm

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *p = &x;

int **pp = &p; // ptr to a ptr

*p = 10;

*pp = &y;

y = 3;

p = &z;

**pp = *p + 3;

printf("%d %d %d \n", x, y, z);

 return 0;

}

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

38

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *p = &x;

int **pp = &p; // ptr to a ptr

*p = 10;

*pp = &y;

y = 3;

p = &z;

**pp = *p + 3;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 3

y 10

z 2

p

pp

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

39

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *p = &x;

int **pp = &p; // ptr to a ptr

*p = 10;

*pp = &y;

y = 3;

p = &z;

**pp = *p + 3;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 10

y 10

z 2

p

pp

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

40

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *p = &x;

int **pp = &p; // ptr to a ptr

*p = 10;

*pp = &y;

y = 3;

p = &z;

**pp = *p + 3;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 10

y 10

z 2

p

pp

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

41

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *p = &x;

int **pp = &p; // ptr to a ptr

*p = 10;

*pp = &y;

y = 3;

p = &z;

**pp = *p + 3;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 10

y 3

z 2

p

pp

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

42

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *p = &x;

int **pp = &p; // ptr to a ptr

*p = 10;

*pp = &y;

y = 3;

p = &z;

**pp = *p + 3;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 10

y 3

z 2

p

pp

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll Solution

❖ What does this program print?

43

int main(int argc, char* argv[]) {

 int x = 3;

int y = 10;

int z = 2;

int *p = &x;

int **pp = &p; // ptr to a ptr

*p = 10;

*pp = &y;

y = 3;

p = &z;

**pp = *p + 3;

printf("%d %d %d \n", x, y, z);

 return 0;

}

x 10

y 3

z 5

p

pp

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

NULL

❖ NULL is a reference that is guaranteed to be invalid

▪ an attempt to dereference NULL causes a segmentation fault

❖ Useful as an indicator of an uninitialized (or currently
unused) pointer

▪ It’s better to cause a segfault than to allow the corruption of
memory!

▪ If you can’t give a pointer an initial value yet, give it NULL!

44

int main(int argc, char* argv[]) {

 int* p = NULL;

 *p = 1; // causes a segmentation fault

 return EXIT_SUCCESS;

}

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Arrays vs Pointers

❖ Arrays and pointers are very similar:

▪ A pointer can refer “point to “ the first element in an array

▪ Because of this, we can access the “index of” a pointer

45

int a[] = {2, 4, 0, 0};

int *p = a;

int a[] = {2, 4, 0, 0};

int *p = a;

printf("%d\n", p[1]); // prints 4

a 2 4 0 0

p

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Arrays vs Pointers

❖ Arrays and pointers are very similar:

▪ A pointer can refer “point to “ the first element in an array

▪ Pointers can be reassigned, arrays cannot

46

int a[] = {2, 4, 0, 0};

int *p = a;

int a[] = {2, 4, 0, 0};

int *p = a;

int x = 3;

p = &x;

// a = &x; // does not compile

p = &(a[1]);

printf("%d\n", p[1]); // prints ???

a 2 4 0 0

p

pollev.com/tqm

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Arrays vs Pointers

❖ Arrays and pointers are very similar:

▪ A pointer can refer “point to “ the first element in an array

▪ Pointers can be reassigned, arrays cannot

47

int a[] = {2, 4, 0, 0};

int *p = a;

int a[] = {2, 4, 0, 0};

int *p = a;

int x = 3;

p = &x;

// a = &x; // does not compile

p = &(a[1]);

printf("%d\n", p[1]); // prints ???

a 2 4 0 0

p

a 2 4 0 0

p

Prints "0"

pollev.com/tqm

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Arrays as Parameters (Pointer Decay)

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

▪ Arrays are secretly passed as pointers to the array

48

int sumAll(int a[]) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

int sumAll(int* a) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

Equivalent

❖ Note: Array syntax works on pointers using pointer arithmetic

▪ E.g. ptr[3] = ...;

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Strings without Objects

❖ Strings are central to C, very important for I/O

❖ In C, we don’t have Objects but we need strings

❖ If a string is just a sequence of characters, we can use an
array of characters as a string

❖ Example:

49

char str_arr[] = "Hello World!";

char *str_ptr = "Hello World!";

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Null Termination

❖ Arrays don’t have a length, but we mark the end of a
string with the null terminator character.
▪ The null terminator has value 0x00 or '\0'

▪ Well formed strings MUST be null terminated

▪ How else would printf know how to stop printing?

❖ Example:

▪ Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

50

char str[] = "Hello";

value 'H' 'e' 'l' 'l' 'o' '\0'

DO NOT FORGET THIS. THIS IS

THE CAUSE OF MANY BUGS

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll: how are you?

❖ What are all the bugs in this code?

51

Discuss

int main(int argc, char* argv[]) {

 // TODO

 char str[] = "Ho";

 char* str_two = "Hi";

 printf("%s and %s\n", str, str_two);

 str = str_two;

 str_two = "Hey";

 printf("%s and %s\n", str, str_two);

 char arr[2];

 arr[0] = 'y';

 arr[1] = 'a’;

 printf("%s\n", arr);

 return 0;

}

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Lecture Outline

❖ C Intro

▪ Cont. from last time:

• Arrays

• Command line args

▪ Pointers

• Box & Arrow Diagrams

• Arrays vs pointers

• C Strings

▪ Structs

▪ The Stack & Pass-by-value

▪ More on Compiling

116

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Compilation: Basics & Running

❖ As we saw last time, we need to compile our code in this
class.

❖ We use clang-15 in this class

❖ Simplest Compilation:

▪ By default produces an executable called a.out

❖ If we want to run the executable, we type:

▪ If it was in a directory (called “test” for example)

▪ The first . is used to say “start looking in the current directory”
117

clang-15 example.c

a.out

./a.out

./test/a.out

.

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Compilation: Options

❖ a.out is not what we usually want to call our programs

❖ Can use the compiler flag
to specify what the output should be called

▪ After the –o, (letter o) need to specify what we want the output
to be called

❖ If we want to compile the file hello.c into an
executable called hello , we can do:

118

clang-15 –o hello hello.c

hello.c

hello

-o

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

Compilation: More Options

❖ We will eventually use a debugger, covered more in a
later class. Add the flag to have the compiler
output have the maximum debugging info

❖ Compiler is pretty good at telling us when something
looks wrong. To turn on “all” warnings, use

▪ Not “all” warnings.

▪ Wall stands for Warnings all

❖ If we want to compile the file hello.c into an
executable called hello , with these options we can
do:

119

clang-15 –g3 –Wall –o hello hello.c

-Wall

hello

-g3

hello.c

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

How to Read (warnings)

❖ You should fix all warnings you have during compilation,
autograder will deduct for warnings AND errors

❖ Some warnings may have “cascading effects”

▪ Try fixing them top to bottom

▪ If you fix one error and still have more errors, try recompiling and
see if the first error fixed others

❖ Demo: missing_semi.c

120

CIS 2400, Fall 2024L01: C, Pointers, Compiling, The StackUniversity of Pennsylvania

How to Read (warnings)

❖ Demo: missing_semi.c

❖ General Structure:

121

missing_semi.c:22:18: error: expected ';' at end of declaration

 album copy = *a

 ^

 ;

missing_semi.c:42:23: error: use of undeclared identifier 'a1'

 printf("a1 = %s\n", a1);

 ^

missing_semi.c:45:50: error: no member named 'title' in 'album'

 printf("madvillainy.title = %s\n", madvillainy.title.data);

                                     ~~~~~~~~~~~ ^

3 errors generated.

file_name.c  :  line num : column num : error/warning description

      line from source code



CIS 2400, Fall 2024L01:  C, Pointers, Compiling, The StackUniversity of Pennsylvania

Poll: how are you?

❖ What’s this trying to say? How do you think we should fix it?

122

Discuss

mystery.c:7:9: error: expected ';' after top level declarator

} string

        ^

        ;

mystery.c:19:8: warning: missing terminating '"' character [-

Winvalid-pp-token]

  mf = "DOOM;

       ^

mystery.c:19:8: error: expected expression

mystery.c:23:5: warning: expression result unused [-Wunused-value]

  x + 2;

  ~ ^ ~

mystery.c:29:1: warning: type specifier missing, defaults to 'int'; 

ISO C99 and later do not support implicit int [-Wimplicit-int]

weird_func() {

^

int

3 warnings and 2 errors generated.



CIS 2400, Fall 2024L01:  C, Pointers, Compiling, The StackUniversity of Pennsylvania

Action Items

❖ Get things setup

❖ HW00

❖ Check-in00

❖ Pre-semester Survey

123


	Default Section
	Slide 1: C Programming Computer Operating Systems, Spring 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia (pt. 1)
	Slide 4: Administrivia (pt. 2)
	Slide 5: HW00 Demo
	Slide 6: Website & Infra Demo
	Slide 7: Lecture Outline
	Slide 8: Sample C program: sum evens
	Slide 9: Another Similarity: Scope
	Slide 10: C vs Java Similarities Overview
	Slide 11: C vs Java
	Slide 12: C vs Java: Differences
	Slide 13: Arrays
	Slide 14: Using Arrays
	Slide 15: Arrays as Parameters
	Slide 16: Solution: Pass Size as Parameter
	Slide 17: C command line args
	Slide 18: C command line args [Live Demo]
	Slide 19: Lecture Outline
	Slide 20: Pointers
	Slide 21: Pointer Operators
	Slide 22: Box and Arrow Diagrams
	Slide 23: Box and Arrow Diagrams
	Slide 24: Box and Arrow Diagrams
	Slide 25: Box and Arrow Diagrams
	Slide 26: Box and Arrow Diagrams
	Slide 27: Box and Arrow Diagrams
	Slide 28: Box and Arrow Diagrams
	Slide 29: Box and Arrow Diagrams
	Slide 30: Poll: how are you?
	Slide 31: Poll Solution
	Slide 32: Poll Solution
	Slide 33: Poll Solution
	Slide 34: Poll Solution
	Slide 35: Poll Solution
	Slide 36: Pointers to Pointers to Pointers to Pointers
	Slide 37: Poll: how are you?
	Slide 38: Poll Solution
	Slide 39: Poll Solution
	Slide 40: Poll Solution
	Slide 41: Poll Solution
	Slide 42: Poll Solution
	Slide 43: Poll Solution
	Slide 44: NULL
	Slide 45: Arrays vs Pointers
	Slide 46: Arrays vs Pointers
	Slide 47: Arrays vs Pointers
	Slide 48: Arrays as Parameters (Pointer Decay)
	Slide 49: Strings without Objects
	Slide 50: Null Termination
	Slide 51: Poll: how are you?
	Slide 116: Lecture Outline
	Slide 117: Compilation: Basics & Running
	Slide 118: Compilation: Options
	Slide 119: Compilation: More Options
	Slide 120: How to Read (warnings)
	Slide 121: How to Read (warnings)
	Slide 122: Poll: how are you?
	Slide 123: Action Items


