
CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bits & Bytes
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any Questions?

2

pollev.com/cis2400

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Lecture Outline

❖ How do we count?

▪ Bases

❖ Binary

▪ Conversions

▪ Hexadecimal

❖ Unsigned Numbers

❖ Overflow

❖ Signed Numbers

▪ Two’s Complement

▪ Two’s Complement Overflow

3

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Lecture Outline

❖ How do we count?

▪ Bases

❖ Binary

▪ Conversions

▪ Hexadecimal

❖ Unsigned Numbers

❖ Overflow

❖ Signed Numbers

▪ Two’s Complement

▪ Two’s Complement Overflow

4

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Base 10 (Decimal Numbers)

❖ Humans typically process numbers in base 10

5

5 9 3 4
Digits 0-9 (0 to base-1)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Base 10 (Decimal Numbers)

❖ Humans typically process numbers in base 10

6

5 9 3 4
100101102103

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Base 10 (Decimal Numbers)

❖ Humans typically process numbers in base 10

7

5 9 3 4
012310X:

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Base 2

8

1 0 1 1
01232X:

Digits 0-1 (0 to base-1)

Each of these is a bit!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Base 2

9

1 0 1 1
20212223

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Base 2

10

1 0 1 1
onestwosfourseights

Most significant bit (MSB) Least significant bit (LSB)

Note: this is only an example with 4 bits!!!

1*8 + 0*4 + 1*2 + 1*1 = 11 (base 10)

1*23 + 0*22 + 1*21 + 1*20 = 11 (base 10)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Base 2

11

1 1 1 1 1 1 1
20212223242526

❖ The I’th bit represents 2i

❖ We can also use the prefix ‘0b’ to denote base 2. (e.g. 0b1101)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Practice: Base 2 to Base 10

❖ What is 0b10110 in base 10?

12

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ What is 0b10110 in base 10?

13

pollev.com/cis2400

A. 6

B. 22

C. 16

D. 38

E. Tbh, I’m not sure.

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ What is 0b10110 in base 10?

14

pollev.com/cis2400

A. 6

B. 22

C. 16

D. 38

E. Tbh, I’m not sure.

(1 * 24) + (0 * 23) + (1 * 22) + (1 * 21) + (0 * 20)

0b10110

16 + 0 + 4 + 2 + 0

22

16 + 4 + 2

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Lecture Outline

❖ How do we count?

▪ Bases

❖ Binary

▪ Conversions

▪ Hexadecimal

❖ Unsigned Numbers

❖ Overflow

❖ Signed Numbers

▪ Two’s Complement

▪ Two’s Complement Overflow

15

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

From Decimals to Binary

❖ Algorithm 1:

▪ Find the largest power of 2 <= the num

▪ Subtract this largest power of 2 from the num

▪ Place a '1' in the bit position corresponding to this power of 2

▪ Repeat until number is 0

16

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

❖ Example: 104

▪ 104 - 64 = 40 64 is 26, so bit 6 is a ‘1’

▪ 40 - 32 = 8 32 is 25, so bit 5 is a ‘1’

▪ 8 – 8 = 0 8 is 23, so bit 3 is a ‘1’

▪ 104 = 0b1101000

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

From Decimals to Binary: Division

❖ Algorithm 2:

▪ Divide by two – remainder will be the next smallest bit

▪ Keep dividing until answer is 0

❖ Example: 104

▪ 104 / 2 = 52 r 0 bit 0 is 0

▪ 52 / 2 = 26 r 0 bit 1 is 0

▪ 26 / 2 = 13 r 0 bit 2 is 0

▪ 13 / 2 = 6 r 1 bit 3 is 1

▪ 6 / 2 = 3 r 0 bit 4 is 0

▪ 3 / 2 = 1 r 1 bit 5 is 1

▪ 1 / 2 = 0 r 1 bit 6 is 1

▪ 104 = 0b1101000

17

Note: think about what it

means to divide a binary number

by two.

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ What is 99 in binary?

18

pollev.com/cis2400

A. 0b111111

B. 0b110111

C. 0b1011111

D. 0b1100011

E. Tbh, I’m not sure

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ What is 99 in binary?

19

pollev.com/cis2400

A. 0b111111

B. 0b110111

C. 0b1011111

D. 0b1100011

E. Tbh, I’m not sure

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

99 – 64 = 35, bit 6 is 1

35 – 32 = 3, bit 5 is 1

3 – 2 = 1, bit 1 is 1

1 – 1 = 0, bit 0 is 1

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Byte Values

❖ What is the minimum and maximum base 10 value a single
byte (8 bits) can store?

20

minimum = 0 maximum = ?

11111111
2x: 7 6 5 4 3 2 1 0

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255

• Strategy 2: 28 – 1 = 255

255

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Multiplying and Dividing by Bases

1450 x 10 = 14500

0b1100 x 2 = 0b11000
Key Idea: inserting 0 at the end multiplies by the bases

21

1450 / 10 = 145
0b1100 / 2 = 0b0110
Key Idea: removing 0 at the end divides by the base!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Hexadecimal

❖ When working with bits, we can have large numbers with up to
64 bits.

22

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

Umm, let’s not….

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Hexadecimal

❖ When working with bits, we can have large numbers with up to
64 bits.

❖ Instead, we’ll represent bits in base-16 instead; this is called
hexadecimal.

23

0110 1010 0011
0-150-150-15

Every 4 bits is a base-16 digit!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Hexadecimal

❖ Hexadecimal is base-16, so we need digits for 1-15.

24

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

Quick Pneumonic:
0xf, means the bits are full and there are four: 0b1111 == 0xf

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Hexadecimal

❖ We can distinguish hexadecimal numbers by prefixing them
with 0x

25

0b10111110011

1523

0x5F3

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,

More “portable” as a human-readable
format
(fun fact: a half-byte is called a nibble)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ What is 0b110101110100 in hex?

26

pollev.com/cis2400

A. 0xD74

B. 0x6BA

C. 0x45D

D. 0x2EB

E. Tbh, I’m not sure

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ What is 0b110101110100 in hex?

27

pollev.com/cis2400

A. 0xD74

B. 0x6BA

C. 0x45D

D. 0x2EB

E. Tbh, I’m not sure

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

0b110101110100

0xD 0x7 0x4

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Hex Spelling (Hexspeak)

❖ 0x8BADF00D

▪ “ate bad food”

• Used by Apple in iOS crash reports, when an application takes too
long to launch, terminate, or respond to system event

❖ 0xDEADBEEf

• Originally used to mark areas of memory that had not yet been
initialized

❖ 0xDEADFA11

▪ "dead fall”

• Used by Apple in iOS crash reports, when the user force quits an
application

❖ 0x0000CACA

▪ "Caca"

• Just for fun

28

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Encoding

❖ We can represent more than just numbers with bits

▪ We just need an agreed upon encoding

❖ Decimal Numbers
▪ 0 → 0x00, 1 → 0x01, … , 240 → 0xF0 …

❖ Characters
▪ A → 0x41, B → 0x42, C → 0x43, …

❖ Colors

▪ → 0x281EF2, → 0x990000

29

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

The Meaning of Bits

❖ A sequence of bits can have many meanings!

❖ Consider the hex sequence 0x4E6F21

▪ Common interpretations include:

▪ The decimal number 5140257

▪ The characters “No!”

▪ The background color of this slide

▪ The real number 7.203034 ×10-39

❖ A series of bits can also be code!

❖ Eg. 0x94000005 means bl 0x100003f90 <_printf…..>

❖ It is up to the program/programmer to decide how

to interpret the sequence of bits 30

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

ASCII

❖ We can encode binary values to represent characters

31

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

ASCII Design

❖ ASCII:
American Standard Code for Information Interchange

❖ Designed to communicate American letters, numbers, and
some control signals efficiently

▪ Used only 7 bits to minimize number of bits that need to be
communicated

▪ Other languages not considered
32

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Unicode

❖ Unicode Standard UTF-8 is an alternate text encoding

▪ Uses between 8 and 32 bits for each “character”

▪ Characters include more than just English

▪ Characters include emojis

❖ Unicode table is a lot longer:
https://unicode-table.com/en/

33

https://unicode-table.com/en/

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Lecture Outline

❖ How do we count?

▪ Bases

❖ Binary

▪ Conversions

▪ Hexadecimal

❖ Unsigned Numbers

❖ Overflow

❖ Signed Numbers

▪ Two’s Complement

▪ Two’s Complement Overflow

34

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Unsigned Integers

❖ An unsigned integer is 0 or a positive integer (no negatives).

❖ Converting between decimal and binary, no difference!

❖ Examples:

 0b0001 = 1

 0b0101 = 5

 0b1011 = 11

 0b1111 = 15

❖ The range of an unsigned number is 0 → 2w – 1

▪ where w is the number of bits.

▪ E.g. a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).

35

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Lecture Outline

❖ How do we count?

▪ Bases

❖ Binary

▪ Conversions

▪ Hexadecimal

❖ Unsigned Numbers

❖ Overflow

❖ Signed Numbers

▪ Two’s Complement

▪ Two’s Complement Overflow

36

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Unsigned Integers

37

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Overflow

If you exceed the maximum value of your bit representation, you
wrap around or overflow back to the smallest bit representation.

▪ 0b1111 + 0b1 = 0b0000

If you go below the minimum value of your bit representation, you
wrap around or overflow back to the largest bit representation.

▪ 0b0000 - 0b1 = 0b1111

38

Here we’re assuming we only have 4 bits to work with!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Lecture Outline

❖ How do we count?

▪ Bases

❖ Binary

▪ Conversions

▪ Hexadecimal

❖ Unsigned Numbers

❖ Overflow

❖ Signed Numbers

▪ Two’s Complement

▪ Two’s Complement Overflow

39

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers: Where Are the Negatives?

❖ Problem: How can we represent negative and positive
numbers in binary?

40

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers: Where Are the Negatives?

❖ Problem: How can we represent negative and positive
numbers in binary?

❖ Ideally, addition would work just like it usually does.

10 + -10 = 0…

41

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers

42

0b 0 1 0 1

+ 0b ? ? ? ?

0b 0 0 0 0

(5 in decimal)

(should be -5 in decimal)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers

43

0b 0 1 0 1

+ 0b 1 0 1 0

0b 1 1 1 1

Here we inverted

the bits!

Um this isn’t 0?

(5 in decimal)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers

44

0b 1 1 1 1

+ 0b ? ? ? ? What do we need to add

 to make it 0?

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers

45

0b 1 1 1 1

+ 0b 0 0 0 1
Remember:

this happens

 because of

overflow!

0b 0 0 0 0

}

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers

46

0b 0 1 0 1

+ 0b 1 0 1 1
So let’s add 1

to what we

inverted before!

0b 0 0 0 0

(5 in decimal)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed Numbers

47

0b 0 1 0 1 = 5

0b 1 0 1 1 = -5

And we’re done!

Wait...isn’t this also 11?

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

0b 1 0 1 0
0b 0 1 0 1

Signed Numbers

48

The negative number is the positive number inverted, plus one!

+

0b 1 1 1 1

0b 0 0 0 1
0b 1 1 1 1

+

0b 0 0 0 0

A binary number plus

 its inverse is all 1s.

Add 1 to this to carry over

all 1s and get 0!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

0b 1 0 1 0
0b 0 1 0 1

Signed Numbers

49

The negative number is the positive number inverted, plus one!

+

0b 1 1 1 1

0b 0 0 0 1
0b 1 1 1 1

+

0b 0 0 0 0

A binary number plus

 its inverse is all 1s.

Add 1 to this to carry over

all 1s and get 0!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Two’s Compliment

50

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Two’s Compliment

51

❖ Here, we represent a positive number as itself, and its
negative equivalent as the two’s complement of itself.

❖ The two’s complement of a number is the binary digits
inverted, plus 1.

❖ A nice consequence is all negative numbers have a 1 in
the Most Significant Bit.

❖ You can use this to go from positive to negative and
negative to positive.

▪ E.g. 0b1111 -> (invert) 0b0000 -> (plus 1) 0b0001

▪ From -1 to 1.

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ What is the Two’s Compliment of 0b10011011?

52

pollev.com/cis2400

A. 0b10111010

B. 0b11100101

C. 0b01100101

D. 0b11111110

E. Tbh, I’m not sure

1st Step: Invert Bits
0b01100100

2nd Step: Add one
0b01100101

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Size Determines Range

53

Type
Size

(Bytes)
Minimum Maximum

char 1 -128 127

unsigned char 1 0 255

short 2 -32768 32767

unsigned short 2 0 65535

int 4 -2147483648 2147483647

unsigned int 4 0 4294967295

long 8 -9223372036854775808 9223372036854775807

unsigned long 8 0 18446744073709551615

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

We still have overflow issues…

54

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Signed vs Unsigned Types

❖ By default, all standard types are signed.

▪ Int, Char, Long, Double

❖ There are many ways to declare unsigned types.

55

char x = 'a';

unsigned char x = 10;

int x = -2400;

unsigned int x = 2400;

//and you get the idea…

Note: the size of the type

and it’s “signess” determine

the range it can represent

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Representations

Consider the following code:

56

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 //a is 97 in ascii

 char x = 'a';

 printf("x is 0x%x.\n", x);

 x = -x;

 printf("x is 0x%x.\n", x);

 return EXIT_SUCCESS;

}

Let’s see what exactly is
printed…

sign_example.c

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Representations

Consider the following code:

57

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 //a is 97 in ascii

 char x = 'a';

 printf("x is 0x%x.\n", x);

 x = -x;

 printf("x is 0x%x.\n", x);

 return EXIT_SUCCESS;

}

Let’s see what exactly is
printed…

In general:
“x is 0x61.”

“x is 0x9f.”

sign_example.c

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operator: & (and)

58

1 & 1 = 1
1 & 0 = 0
0 & 1 = 0
0 & 0 = 0

Only if both bits
are one, will it stay one!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operator: & (and)

59

0b 0 1 0 1

& 0b 1 1 0 1

0b 0 1 0 1

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operator: | (or)

60

1 | 1 = 1
1 | 0 = 1
0 | 1 = 1
0 | 0 = 0

If either bits are one,
will evaluate to one

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operator: | (or)

61

0b 0 1 0 1

| 0b 1 1 0 1

0b 1 1 0 1

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operator: ^ (xor)

62

1 ^ 1 = 0
1 ^ 0 = 1
0 ^ 1 = 1
0 ^ 0 = 0

ONLY IF ONE BIT is one,
will evaluate to one

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operator: ^ (xor)

63

0b 0 1 1 1

^ 0b 1 1 0 1

0b 1 0 1 0

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operators

Consider the following code:

64

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 char x = 0xff;

 char y = 0xf0;

 char z = x & y;

 printf("The value of z is %x\n.", z);

 return EXIT_SUCCESS;

}

What is char z in binary?

In general:
Z will be 0b11110000

0b11111111
& 0b11110000

0b11110000

bit_ops.c

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Bit Operators

Consider the following code:

65

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 //a is 97 in ascii

 char x = 0xf0;

 char y = 0xf1;

 char z = x ^ y;

 printf("The value of z is %x\n.", z);

 return EXIT_SUCCESS;

}

What is char z in binary?

In general:
Z will be 0b00000001

0b11110000
^ 0b11110001

0b00000001

bit_ops.c

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

C IS NOT JAVA

DO NOT DO THIS

66

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 int ube = foo();

 int miso = fuh();

 if(ube & miso)

 …

 …

 …

& IS NOT A

LOGICAL OPERATOR!!

IT IS FOR

BITWISE OPERATIONS!!!

It will literally evaluate
to the bit value.

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

More Bit Operators: ~ (not)

67

~ 0b 0 1 0 1

0b 1 0 1 0

This operation negates the bits!

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

More Bit Operators: << (left shift)

68

0b 0 0 1 0 1 << 1

0b 0 1 0 1 0

This operation shifts the bits n many times to the left.

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

More Bit Operators: >> (right shift)

69

0b 0 0 1 0 1 >> 1

0b 0 0 0 1 0

This operation shifts the bits n many times to the right.

What happened

to the LSB?

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

What about Logical (Boolean) Operators?

❖ C doesn’t have Booleans! (Technically…)

❖ Traditionally, just use an int to represent 1 for true and 0
for false.

70

&& Logical And || Logical Or ! Logical Not

X Y X && Y

T T T

T F F

F T F

F F F

X Y X || Y

T T T

T F T

F T T

F F F

X ! X

T F

F T

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

What about Logical (Boolean) Operators?

71

&& Logical And

|| Logical Or

! Logical Not

if(X && Y)

if(X || Y)

if(!X)

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Know the Difference

72

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

 int x = 0xf0;

 int y = 0x0f;

 if(x & y){

 printf("First print!\n");

 }

 if(x && y){

 printf("Second print!\n");

 }

 return EXIT_SUCCESS;

}

Talk to your neighbor: what will be printed?

A. First print!

B. Second print!

C.
 First print!
 Second print!

D.
 Second First
 print!

 print!

pollev.com/cis2400

bitop_v_logic.c

CIS 2400, Fall 2024L02: Bits & BytesUniversity of Pennsylvania

Lecture Take-aways

❖ We can represent anything in binary by using different
encodings!

▪ Numbers, colors, characters, emojis, code, etc..

❖ Hexadecimal is more human friendly…

❖ Our encodings/data is limited due to finite bits

▪ Especially, when we are explicit about the types we use.

❖ Unsigned Numbers are non-negative integers

❖ Signed numbers use Two’s Compliment to represent
negative numbers

❖ Bitwise operators allow you to manipulate individual bits.

73

	Default Section
	Slide 1: Bits & Bytes Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Lecture Outline
	Slide 4: Lecture Outline
	Slide 5: Base 10 (Decimal Numbers)
	Slide 6: Base 10 (Decimal Numbers)
	Slide 7: Base 10 (Decimal Numbers)
	Slide 8: Base 2
	Slide 9: Base 2
	Slide 10: Base 2
	Slide 11: Base 2
	Slide 12: Practice: Base 2 to Base 10
	Slide 13: One way to read() n bytes
	Slide 14: One way to read() n bytes
	Slide 15: Lecture Outline
	Slide 16: From Decimals to Binary
	Slide 17: From Decimals to Binary: Division
	Slide 18: One way to read() n bytes
	Slide 19: One way to read() n bytes
	Slide 20: Byte Values
	Slide 21: Multiplying and Dividing by Bases
	Slide 22: Hexadecimal
	Slide 23: Hexadecimal
	Slide 24: Hexadecimal
	Slide 25: Hexadecimal
	Slide 26: One way to read() n bytes
	Slide 27: One way to read() n bytes
	Slide 28: Hex Spelling (Hexspeak)
	Slide 29: Encoding
	Slide 30: The Meaning of Bits
	Slide 31: ASCII
	Slide 32: ASCII Design
	Slide 33: Unicode
	Slide 34: Lecture Outline
	Slide 35: Unsigned Integers
	Slide 36: Lecture Outline
	Slide 37: Unsigned Integers
	Slide 38: Overflow
	Slide 39: Lecture Outline
	Slide 40: Signed Numbers: Where Are the Negatives?
	Slide 41: Signed Numbers: Where Are the Negatives?
	Slide 42: Signed Numbers
	Slide 43: Signed Numbers
	Slide 44: Signed Numbers
	Slide 45: Signed Numbers
	Slide 46: Signed Numbers
	Slide 47: Signed Numbers
	Slide 48: Signed Numbers
	Slide 49: Signed Numbers
	Slide 50: Two’s Compliment
	Slide 51: Two’s Compliment
	Slide 52: One way to read() n bytes
	Slide 53: Size Determines Range
	Slide 54: We still have overflow issues…
	Slide 55: Signed vs Unsigned Types
	Slide 56: Bit Representations
	Slide 57: Bit Representations
	Slide 58: Bit Operator: & (and)
	Slide 59: Bit Operator: & (and)
	Slide 60: Bit Operator: | (or)
	Slide 61: Bit Operator: | (or)
	Slide 62: Bit Operator: ^ (xor)
	Slide 63: Bit Operator: ^ (xor)
	Slide 64: Bit Operators
	Slide 65: Bit Operators
	Slide 66: C IS NOT JAVA
	Slide 67: More Bit Operators: ~ (not)
	Slide 68: More Bit Operators: << (left shift)
	Slide 69: More Bit Operators: >> (right shift)
	Slide 70: What about Logical (Boolean) Operators?
	Slide 71: What about Logical (Boolean) Operators?
	Slide 72: Know the Difference
	Slide 73: Lecture Take-aways

