
CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Simplification & Combinational Logic
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any Questions from last lecture?

2

pollev.com/tqm

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Upcoming Due Dates

❖ HW03 (RPN):

▪ Due Friday

❖ HW04 will release on Friday, will be due before Fall break.

▪ THIS IS A WRITTEN HW, AT MAX 72 HOURS LATE

▪ It should be pretty short.

▪ We want to give you some practice on hardware that we are sure
we can get graded and back to you before the midterm.

▪ Will try to get HW05 back to you before midterm as well, but
aren’t certain about it.

❖ Lecture check-in posted soon (tonight or tomorrow)

3

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Lecture Outline

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

4

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

PLA’s

❖ What if we only had a truth table to create a gate circuit?

❖ PLA: Programmable Logic Array

▪ A device where we can configure
AND, OR and NOT gates to
implement a function

5

A B C OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

GATES

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Implementing a PLA From a Truth Table

❖ NOT, AND, OR can implement any truth table function

6

A B C OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

A B C

OUT

1. AND combinations

that yield a "1" in the

truth table

2. OR the results

of the AND gates

Notice, 5 rows that cause a “1” in the output…5 AND gates
Notice, 1 output, only 1 OR gate
Notice, negations always happen before the AND gates

IN a PLA, this

structure is

always followed

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

❖ PLA’s are already manufactured
chips that you can buy and then
“program” to behave how you like

Why This Format?

7

By Ilia Kr. - Own work. Created using Inkscape, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=22305322

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

PLA to Boolean expression

❖ Given this PLA, we can convert it to a Boolean expression

▪ (~A & ~B & C) | (~A & B & C) | (A & ~B & C) | (A & B & ~C) | (A & B
& C)

▪ (C & ((~A & ~B) | (~A & B) | (~A & B) | (A & B)))| (A & B & ~C)

• // distributive property

• // TODO: Simplify the rest, what do you get?

8

A B C

OUT

pollev.com/tqm

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

PLA to Boolean expression

❖ Given this PLA, we can convert it to a Boolean expression

▪ (~A & ~B & C) | (~A & B & C) | (A & ~B & C) | (A & B & ~C) | (A & B
& C)

▪ (C & ((~A & ~B) | (~A & B) | (~A & B) | (A & B)))| (A & B & ~C)

• // distributive property

▪ (C & 1) | (A & B & ~C)

• // a lot of identity properties that were omitted for space

▪ C | (A & B & ~C) // Identity

▪ (C | A) & (C | B) & (C | ~C) // Distributive

▪ (C | A) & (C | B) & 1 // Identity

▪ (C | A) & (C | B) // identity

▪ C | (A & B) // distributive

9

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

PLAs Pros & Cons

❖ A PLA can be used to implement ANY logical function

▪ Provides you with an incredibly easy tool to use

▪ If you can generate a truth table to model desired behavior

• PLA gives you a way generate the gate level implementation

▪ However, PLAs don’t give the most efficient solution

• In terms of “run-time” and transistor cost

10

A B C OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

A B C

OUT

A

B OUT

C

F=(A AND B) OR C

Logic Function

Truth Table

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Lecture Outline

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

11

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Combinational Logic

❖ Boolean functions where the output is a pure function of
the inputs

▪ There is no “memory” or “stored state”

❖ So far, we have basic logic gates from last lecture:

❖ We can build more complex "gates" that we can use as
building blocks for a processor

❖ This Lecture: start implementing binary arithmetic >:]

12

AND ORNOT/INV NAND NOR

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Aside: XOR Gate

❖ Performs the XOR operation

13

A B OUT

0 0 0

0 1 1

1 0 1

1 1 0

B

A
OUT

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Creating an Incrementor

❖ Let's create a 16-bit incrementor!

▪ Input: A (as a 16 bit 2C integer)

▪ Output: S = A + 1 (as a 16-bit 2C integer)

▪ Ignore the overflow case for now

❖ Theoretical Approach:

▪ Use a PLA-like technique to implement the circuit

▪ Problem: 216 or 65536 different inputs, 16-bit output

▪ This is impractical

14

+1 SA
16 16

0000000011001011
+0000000000000001

0000000011001100

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

One Bit Incrementor "PLA"

❖ Implementing a single-column of an incrementor

▪ Inputs: An, Carryin

▪ Outputs: Sn, Carryout

15

0000000011001011
+0000000000000001

0000000011001100

An Cin Sn Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

An Cin

Sn

Cout

+ SnAn

1 1

CarryInn

CarryOutn

(Ignore LSB for now)

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

CMOS Examples #1

16

❖ Which of the follow is an equivalent expression for Sn?

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B. (An | ~Cin) & (~An | Cin)

C. ~(Cin ^ An)

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0^ is xor

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

CMOS Examples #1

17

❖ Which of the follow is an equivalent expression for Sn?

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B. (An | ~Cin) & (~An | Cin)

C. ~(Cin ^ An)

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0^ is xor

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

One Bit Incrementor Alternative

❖ Can implement with an XOR gate instead

18

An Cin

Sn

An Cin

Sn

Cout Cout

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

N-bit Incrementor

❖ We can chain the 1-bit Incrementors together

▪ Carry-out for bit N, is Carry-in for bit N+1

❖ 4-bit Incrementor example:

19

+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

+ S3A3

1 1
CarryIn3

CarryOut3

…but how do we
start off the least-significant bit?

+1 SA
4 4

4-bit incrementer
“implemented” using 4
1-bit half-adders

Can easily scale to 16-bits

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

N-bit incrementor LSB

❖ How do we handle the Least significant bit?

20

00001011
+00000001

00001100
+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

. . .

00001011
+00000000

00001100

Cin = 1

No longer needed;
implicitly encoded
with Cin

1

We “carry in” a 1

How do we
handle the
initial 1?

REMEMBER: This is all made of logic gates

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Lecture Outline

21

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Adder

❖ Similar to incrementor, but doesn’t quite work:

▪ Incrementor only had to add 2 bits

▪ Works for the LSB, since there is no “carry in” for the LSB

▪ Bits other than the LSB may need to add two bits + carry in

22

HA SumA

B

CarryOut (Cout)

1
+ 1

1 0

A

B

SumCout

1 1
+ 1 1
1 1 0

A

B

Sum

Cin

Cout

1

FA Sum
A

CarryIn

CarryOut

B

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

One-Bit Adder

❖ Like incrementor, we will build a 1-bit component first

❖ Start from a truth table

❖ Create a PLA from it

23

0

1

0

0

1

1

1

0

1

0

1

1

0

0

1

0

110

001

101

011

S

1

1

0

0

B

10

00

1

0

A

1

0

CoutCin

Add Sn

An

1
1

CarryInn

CarryOutn

Bn

1

This is just two PLAs

fused on the common input

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

CarryIn

N-Bit Adder

. . .

Add S0

A0

CarryIn0

CarryOut0

B0

Add S1

A1

CarryIn1

CarryOut1

B1

Add S2

A2

CarryIn2

CarryOut2

B2

CarryIn

CarryOut

A

B

S
n

n

n

CarryOut: useful for
detecting overflow

CarryIn: assumed to be zero
if not present

+

24

Gate Level

Abstraction

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Aside: Efficiency

❖ Full Disclosure:

▪ Our adder: Ripple-carry adder

▪ No one really uses ripple-carry adders

▪ Why? way too slow

▪ Latency proportional to n

❖ We can do better:

▪ Many ways to create adders with latency proportional to log2(n)

▪ In theory: constant latency (build a big PLA)

▪ In practice: too much hardware, too many high-degree gates

▪ “Constant factor” matters, too

▪ If you continue to CIS 471, you’ll encounter “carry look ahead
adders”, more efficient architecture

25

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Subtractor

❖ Build a subtractor from an adder

▪ Calculate A – B = A + –B

▪ Negate B

▪ Recall –B = NOT(B) + 1

26

B
16

a
d

d
e

r

CarryIn

S
16

16
+1

16

A

16

Approach #1

a
d

d
e

r

S
16

B
16 16

A

16 CarryIn
1

Approach #2

We “carry in” a 1
(no longer need incrementer)

Why is approach #2 better?

Can we combine this with the adder?

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Lecture Outline

27

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

The Multiplexer

❖ Selector/Chooser of signals

❖ Shorthand: "Mux"

28

0 1

2-to-1 Mux

00

2

01

2

10

2

11

2

4-to-1 Mux

S

O

B

A

A

B

S=

O

Input “S” selects A or B to attach to “O” output
Acts like an “IF/ELSE” statement

Note: selector bits map all “0”

to the top input, and increment

each input “down”

If you don’t want to follow this

ordering, label your MUX in the HW

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

The Multiplexor In General

❖ In General

▪ N select bits chooses from 2N inputs

▪ An incredibly useful building block

❖ Multi-bit Muxes

▪ Can switch an entire “bus” or group of signals

▪ Switch n-bits with n muxes with the same select bits

29

S

216

16

16

16

16

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

CMOS Examples #1

30

❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B. 01

C. 00

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

CMOS Examples #1

31

❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B. 01

C. 00

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

A

B

16

16

16

16

16

1 16
S

Add/Sub

32

Adder/Subtractor - Approach #1

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

CarryIn

S
16A

16

16
B 16

Add/Sub
1

33

CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

Adder/Subtractor - Approach #2

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Lecture Outline

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

34

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Creating a Multiplier

❖ Combinational Multiplier using adders & muxes

▪ Let’s build a 4-bit multiplier that makes an 8-bit product

▪ Recall: shifting is the same as multiplying by powers of 2

▪ Notation in this example: B[0], means LSB bit of B

35

+

8

5

5

A

00000

7

+

6

+

B[1]=0

B[0]=1

6

A<<2

0

B[2]=1

B[3]=0

1101

x 0101

01101

00000

110100

+ 0000000

 01000001

1310

510

6510

A=
B=

(01101)

5

A<<1

00000

(11010)

(110100)

01000001

7

A<<3

0

(1101000)

CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

Arithmetic Algos

❖ Multiplication:

▪ More time efficient algos exist(Karatsuba and others)

❖ Divide/mod?

▪ Much harder than multiplication

▪ Most implementations are not combinational, but are sequential
(more on sequential logic starting in 2 lectures)

❖ Bitwise ops (AND, OR, XOR, …)

▪ Easy

❖ Arbitrary left-right shift

▪ Can be done with just muxes (try it if you want!) 36

	Default Section
	Slide 1: Simplification & Combinational Logic Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Upcoming Due Dates
	Slide 4: Lecture Outline
	Slide 5: PLA’s
	Slide 6: Implementing a PLA From a Truth Table
	Slide 7: Why This Format?
	Slide 8: PLA to Boolean expression
	Slide 9: PLA to Boolean expression
	Slide 10: PLAs Pros & Cons
	Slide 11: Lecture Outline
	Slide 12: Combinational Logic
	Slide 13: Aside: XOR Gate
	Slide 14: Creating an Incrementor
	Slide 15: One Bit Incrementor "PLA"
	Slide 16: CMOS Examples #1
	Slide 17: CMOS Examples #1
	Slide 18: One Bit Incrementor Alternative
	Slide 19: N-bit Incrementor
	Slide 20: N-bit incrementor LSB
	Slide 21: Lecture Outline
	Slide 22: Adder
	Slide 23: One-Bit Adder
	Slide 24: N-Bit Adder
	Slide 25: Aside: Efficiency
	Slide 26: Subtractor
	Slide 27: Lecture Outline
	Slide 28: The Multiplexer
	Slide 29: The Multiplexor In General
	Slide 30: CMOS Examples #1
	Slide 31: CMOS Examples #1
	Slide 32: Adder/Subtractor - Approach #1
	Slide 33: Adder/Subtractor - Approach #2
	Slide 34: Lecture Outline
	Slide 35: Creating a Multiplier
	Slide 36: Arithmetic Algos

