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Poll: how are you?

❖ How are you? Any Questions from last lecture?
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Upcoming Due Dates

❖ HW03 (RPN):

▪ Due Friday

❖ HW04 will release on Friday, will be due before Fall break.

▪ THIS IS A WRITTEN HW, AT MAX 72 HOURS LATE

▪ It should be pretty short.

▪ We want to give you some practice on hardware that we are sure 
we can get graded and back to you before the midterm. 

▪ Will try to get HW05 back to you before midterm as well, but 
aren’t certain about it.

❖ Lecture check-in posted soon (tonight or tomorrow)
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Lecture Outline

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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PLA’s

❖ What if we only had a truth table to create a gate circuit?

❖ PLA: Programmable Logic Array

▪ A device where we can configure
AND, OR and NOT gates to
implement a function
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A B C OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

GATES
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Implementing a PLA  From a Truth Table

❖ NOT, AND, OR can implement any truth table function
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A B C OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

A B C

OUT

1. AND combinations 

that yield a "1" in the 

truth table

2. OR the results

of the AND gates

Notice, 5 rows that cause a “1” in the output…5 AND gates
Notice, 1 output, only 1 OR gate
Notice, negations always happen before the AND gates

IN a PLA, this 

structure is 

always followed



CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

❖ PLA’s are already manufactured
chips that you can buy and then
“program” to behave how you like

Why This Format?
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By Ilia Kr. - Own work. Created using Inkscape, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=22305322
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PLA to Boolean expression

❖ Given this PLA, we can convert it to a Boolean expression

▪ (~A & ~B & C) | (~A & B & C) | (A & ~B & C) | (A & B & ~C) | (A & B 
& C)

▪ (C & ( (~A & ~B) | (~A & B) | (~A & B) | (A & B) ) )| (A & B & ~C) 

• // distributive property

• // TODO: Simplify the rest, what do you get?
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A    B   C

OUT
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PLA to Boolean expression

❖ Given this PLA, we can convert it to a Boolean expression

▪ (~A & ~B & C) | (~A & B & C) | (A & ~B & C) | (A & B & ~C) | (A & B 
& C)

▪ (C & ( (~A & ~B) | (~A & B) | (~A & B) | (A & B) ) )| (A & B & ~C) 

• // distributive property

▪ (C & 1) | (A & B & ~C) 

• // a lot of identity properties that were omitted for space

▪ C | (A & B & ~C)  //  Identity

▪ (C | A) & (C | B) & (C | ~C) // Distributive

▪ (C | A) & (C | B) & 1 // Identity

▪ (C | A) & (C | B)   // identity

▪ C | (A & B)  // distributive
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PLAs Pros & Cons

❖ A PLA can be used to implement ANY logical function

▪ Provides you with an incredibly easy tool to use

▪ If you can generate a truth table to model desired behavior

• PLA gives you a way generate the gate level implementation

▪ However, PLAs don’t give the most efficient solution

• In terms of “run-time” and transistor cost
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A B C OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

A B C

OUT

A

B OUT

C

F=(A AND B) OR C 

Logic Function

Truth Table
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Lecture Outline

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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Combinational Logic

❖ Boolean functions where the output is a pure function of 
the inputs 

▪ There is no “memory” or “stored state”

❖ So far, we have basic logic gates from last lecture:

❖ We can build more complex "gates" that we can use as 
building blocks for a processor

❖ This Lecture: start implementing binary arithmetic >:]
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AND ORNOT/INV NAND NOR
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Aside: XOR Gate

❖ Performs the XOR operation
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A B OUT

0 0 0

0 1 1

1 0 1

1 1 0

B

A
OUT
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Creating an Incrementor

❖ Let's create a 16-bit incrementor!

▪ Input: A (as a 16 bit 2C integer)

▪ Output: S = A + 1 (as a 16-bit 2C integer)

▪ Ignore the overflow case for now

❖ Theoretical Approach:

▪ Use a PLA-like technique to implement the circuit

▪ Problem: 216 or 65536 different inputs, 16-bit output

▪ This is impractical
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+1 SA
16 16

0000000011001011
+0000000000000001

0000000011001100
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One Bit Incrementor "PLA"

❖ Implementing a single-column of an incrementor

▪ Inputs: An, Carryin 

▪ Outputs: Sn, Carryout 
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0000000011001011
+0000000000000001

0000000011001100

An Cin Sn Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

An Cin

Sn

Cout

+ SnAn

1 1

CarryInn

CarryOutn

(Ignore LSB for now)
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CMOS Examples #1

16

❖ Which of the follow is an equivalent expression for Sn? 

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B.   (An | ~Cin) & (~An | Cin) 

C. ~(Cin ^ An)          

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0^ is xor
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CMOS Examples #1
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❖ Which of the follow is an equivalent expression for Sn? 

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B.   (An | ~Cin) & (~An | Cin) 

C. ~(Cin ^ An)          

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0^ is xor
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One Bit Incrementor Alternative

❖ Can implement with an XOR gate instead
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An Cin

Sn

An Cin

Sn

Cout Cout
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N-bit Incrementor

❖ We can chain the 1-bit Incrementors together

▪ Carry-out for bit N, is Carry-in for bit N+1

❖ 4-bit Incrementor example:
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+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

+ S3A3

1 1
CarryIn3

CarryOut3

…but how do we
start off the least-significant bit?

+1 SA
4 4

4-bit incrementer
“implemented” using 4
1-bit half-adders

Can easily scale to 16-bits
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N-bit incrementor LSB

❖ How do we handle the Least significant bit?
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00001011
+00000001

00001100
+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

. . .

00001011
+00000000

00001100

Cin = 1

No longer needed;
implicitly encoded 
with Cin 

1

We “carry in” a 1

How do we 
handle the 
initial 1?

REMEMBER: This is all made of logic gates
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Lecture Outline
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❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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Adder

❖ Similar to incrementor, but doesn’t quite work:

▪ Incrementor only had to add 2 bits

▪ Works for the LSB, since there is no “carry in” for the LSB

▪ Bits other than the LSB may need to add  two bits + carry in
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HA SumA

B

CarryOut (Cout)

1
+   1

1 0

A

B

SumCout

1 1
+   1 1
1 1 0

A

B

Sum

Cin

Cout

1

FA Sum
A

CarryIn

CarryOut

B
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One-Bit Adder

❖ Like incrementor, we will build a 1-bit component first

❖ Start from a truth table

❖ Create a PLA from it
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0

1

0

0

1

1

1

0

1

0

1

1

0

0

1

0

110

001

101

011

S

1

1

0

0

B

10

00

1

0

A

1

0

CoutCin

Add Sn

An

1
1

CarryInn

CarryOutn

Bn

1

This is just two PLAs 

fused on the common input
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CarryIn

N-Bit Adder

. . .

Add S0

A0

CarryIn0

CarryOut0

B0

Add S1

A1

CarryIn1

CarryOut1

B1

Add S2

A2

CarryIn2

CarryOut2

B2

CarryIn

CarryOut

A

B

S
n

n

n

CarryOut: useful for 
detecting overflow

CarryIn: assumed to be zero 
if not present

+

24

Gate Level

Abstraction
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Aside: Efficiency 

❖ Full Disclosure:

▪ Our adder: Ripple-carry adder

▪ No one really uses ripple-carry adders

▪ Why? way too slow

▪ Latency proportional to n

❖ We can do better:

▪ Many ways to create adders with latency proportional to log2(n)

▪ In theory: constant latency (build a big PLA)

▪ In practice: too much hardware, too many high-degree gates

▪ “Constant factor” matters, too

▪ If you continue to CIS 471, you’ll encounter “carry look ahead 
adders”, more efficient architecture
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Subtractor

❖ Build a subtractor from an adder

▪ Calculate A – B = A + –B

▪ Negate B

▪ Recall –B = NOT(B) + 1

26

B
16

a
d

d
e

r

CarryIn

S
16

16
+1

16

A

16

Approach #1

a
d

d
e

r

S
16

B
16 16

A

16 CarryIn
1

Approach #2

We “carry in” a 1
(no longer need incrementer)

Why is approach #2 better?

Can we combine this with the adder?
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Lecture Outline

27

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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The Multiplexer

❖ Selector/Chooser of signals

❖ Shorthand: "Mux"
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0 1

2-to-1 Mux

00

2

01

2

10

2

11

2

4-to-1 Mux

S

O

B

A

A

B

S=

O

Input “S” selects A or B to attach to “O” output
Acts like an “IF/ELSE” statement

Note: selector bits map all “0” 

to the top input, and increment 

each input “down”

If you don’t want to follow this 

ordering, label your MUX in the HW



CIS 2400, Fall 2024L09: Simplification & Combinatorial LogicUniversity of Pennsylvania

The Multiplexor In General

❖ In General

▪ N select bits chooses from 2N inputs

▪ An incredibly useful building block

❖ Multi-bit Muxes

▪ Can switch an entire “bus” or group of signals

▪ Switch n-bits with n muxes with the same select bits

29

S

216

16

16

16

16
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CMOS Examples #1
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❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B.   01 

C. 00         

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10
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CMOS Examples #1
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❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B.   01 

C. 00         

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10
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CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

A

B

16

16

16

16

16

1 16
S

Add/Sub

32

Adder/Subtractor - Approach #1
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CarryIn

S
16A

16

16
B 16

Add/Sub
1

33

CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

Adder/Subtractor - Approach #2
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Lecture Outline

❖ PLAs & Simplification

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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Creating a Multiplier

❖ Combinational Multiplier using adders & muxes 

▪ Let’s build a 4-bit multiplier that makes an 8-bit product

▪ Recall: shifting is the same as multiplying by powers of 2

▪ Notation in this example: B[0], means LSB bit of B

35

+

8

5

5

A

00000

7

+

6

+

B[1]=0

B[0]=1

6

A<<2

0

B[2]=1

B[3]=0

1101

x 0101

-------------

01101

00000

110100

+ 0000000

-------------

  01000001

1310

510

6510

A=
B=

(01101)

5

A<<1

00000

(11010)

(110100)

01000001

7

A<<3

0

(1101000)
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Arithmetic Algos

❖ Multiplication:

▪ More time efficient algos exist(Karatsuba and others) 

❖ Divide/mod?

▪ Much harder than multiplication

▪ Most implementations are not combinational, but are sequential
(more on sequential logic starting in 2 lectures)

❖ Bitwise ops (AND, OR, XOR, …)

▪ Easy

❖ Arbitrary left-right shift

▪ Can be done with just muxes (try it if you want!) 36
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