
CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

RISC-V Sim & Single Cycle
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Poll: how are you?

❖ Any Questions on Registration?

2

pollev.com/tqm

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Logistics

❖ Midterm: Soontm

▪ Edge cases need to be looked at, and a few files need to be
rescanned

▪ I hope tonight

❖ HW07 is out and due this Friday at midnight

▪ Should have everything you need after this lecture

❖ HW08 comes out this Friday/weekend

❖ Check-in06 out later this week

❖ Looking over the mid sem feedback, will get back to you
3

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Logistics Pt. 2

❖ Office Hours this week

▪ No Office Hours on Halloween (Thursday)

▪ Reduced TA presence at office hours the day after (Friday)

❖ Will still have lecture on Thursday

❖ Registration happening soon

▪ Plan is to take questions from y’all and then bring some TA’s and
answers to the last 15 minutes of next lecture

❖ Election happening soon

4

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Lecture Outline

❖ RISC-V

❖ Penn-sim

❖ Peek at next time

❖ Aside: Sized Integers

❖ Binary File I/O

5

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

RISC-V Directives

❖ We can include directives to indicate where things in our
ASM program should be loaded into memory
▪ .text

• Next instructions are in the .text (code) section of memory

▪ .data

• Next values are in the .data section space

▪ .p2align <n>

• Align the next values to the specified power of 2
.p2align 2 aligns to 4 bytes

▪ .global <name>

• Registers the name for the assembler and “processor” to recognize
outside that file.

❖ Other directives exist, more on those later 6

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

LC4 Example .asm file

7

.text

 .globl strlen

 .p2align 2

strlen:

 # comment

 addi x5, x0, 0 # set len (x5) to 0

 lb x6, 0(x10) # load one bytes from *str into temp

.CONDITION:

 beq x6, x0, .AFTER # while (temp != '\0') {

 addi x5, x5, 1 # len += 1

 addi x10, x10, 1 # str += 1

 lb x6, 0(x10) # temp = *str

 jal x0, .CONDITION # }

.AFTER:

 addi x10, x5, 0 # puts len into the "return value" reg

.END:

 .data

 .p2align 0

 .global str

str:

 .asciz "hello" # ascii characters with a '\0' at the end

Directives to indicate this is code

Goes back to .CONDITION

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

❖ We have a lot of branch instructions, but we don’t have a
ble (Branch if less than or equal to [<=]) instruction.

Why is a ble instruction not needed?

8

pollev.com/tqm

INSTR Meaning

beq rs1, rs2, imm12 Branch if rs1 == rs2

bne rs1, rs2, imm12 Branch if rs1 != rs2

blt rs1, rs2, imm12 Branch if rs1 < rs2

bge rs1, rs2, imm12 Branch if rs1 >= rs2

bltu rs1, rs2, imm12 Branch if rs1 < rs2 (treat values as unsigned)

bgeu rs1, rs2, imm12 Branch if rs1 >= rs2 (treat values as unsigned)

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Pseudo-Instructions & Register Aliases

❖ There are a lot of common operations that don’t translate
directly into instructions, but we can do the equivalent
thing in one “real”
instruction.

❖ Pseudo instructions
will be translated into
their base instruction(s)
by the "compiler".

❖ The processor has no
notion of these
pseudo-instructions. 9

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Pseudo-Instructions & Register Aliases

❖ We have 32 registers (x0 through x31) and the program
counter.

❖ Some registers have conventional uses.

▪ x5 is usually used as a “temporary” register (t0)

▪ x10 is usually the first argument to a function (a0)

• Sometimes is also where return value is stored

▪ x11 is usually the first argument to a function (a1)

▪ etc.

▪ PC always is the PC

10

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

More Sample RISC-V Program

❖ Let’s look at some more risc-v programs
▪ strlen.s (the program I showed earlier)

▪ sum_numbers.s

▪ multiply.s

11

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

More RISC-V Directives

❖ These assembly directives provide information on how
various data/constants should be assembled
▪ .word <value>

• Store the associated 32-bit value in memory

▪ .half <value>

• Store the associated 16-bit value in memory

▪ .fill <repeat>, <size>, <value>

• Stores <repeat> values of <size> size contiguously in memory

▪ .asciz "string value"

• Store the associated string value (with a null terminator) in memory

▪ .ascii "string value"

• Same as before, but with no null-terminator

12

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Lecture Outline

❖ RISC-V

❖ Penn-sim

❖ Peek at next time

❖ Aside: Sized Integers

❖ Binary File I/O

13

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

ASM Files

❖ Assembly Files are text files that contain a lot of
conveniences for ASM programmers

▪ Instructions written as text (not as 32-bit patterns)

▪ Comments

▪ Initial values of some memory locations

▪ Labels to refer to addresses and values

▪ Directives

▪ Pseudo Instructions

❖ ASM files are not directly run on a processor, this file
needs to be processed into something machine-readable

14

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Text Files

❖ .s (sometimes .asm) files and source code files for most
languages are text files:

▪ They can only contain ascii (or sometimes Unicode) characters.

▪ Are not directly executed by the computer

❖ Text files are different from .docx and .pdf files

▪ You cannot write text files in Microsoft Word

❖ Text files are created and edited by a text editor

▪ Vim, Emacs, Notepad, Notepad++, Nano, Sublime, Atom, etc.

15

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

ASM -> OBJ Process

❖ Assembly Files need to be
processed by an assembler
to become machine code

❖ Machine code can be
executed directly by the
computer hardware.
(or a simulator in our case)

❖ Demo: multiply.o vs
multiply.s

16

(.s)

(.o)

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

penn-sim

❖ single_as: A C++ program written to:

▪ Convert a single RISC-V Assembly file to an
object file w/ machine code

❖ penn-sim: A C++ program written to:

▪ Simulate the operations of RISC-V ISA

▪ Provide debugging tools for RISC-V ISA

❖ penn-sim Demo

▪ (See the lecture recording)

❖ Travis wrote these this semester. If there is an error, let
him know. 17

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

penn-sim Commands Pt. 1

❖ penn-sim has a command line at the top that you can type
commands into
▪ set <register> <value>

• Loads a specific value into a register, works for special registers too
(PC)

▪ list

• Lists the ASM instructions around the current program couter

▪ info registers

• Lists out the current values of all registers

▪ info labels

• Lists out the current values of all labels

▪ help

• Gives some helpful information on the what commands are available
and what they do.

18

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

PennSim Commands Pt. 2

▪ break <label | address>

• Set a break point at the specific label or address

▪ del <label | address>

• Remove a break point at the specific label or address

▪ step

• Simulate the execution of the next instruction

▪ run

• Continue the simulation until a breakpoint or fatal error is
encountered

▪ script <filename>

• You can put a sequence of commands in a text file and then run them
all at once using this command. Convenient for HW07

19

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Lecture Outline

❖ RISC-V

❖ Penn-sim

❖ Peek at next time

❖ Aside: Sized Integers

❖ Binary File I/O

20

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

❖ What is the purpose of
this assembly?

21

pollev.com/tqm

.text

 .globl foo

 .p2align 2

foo:

 mv a4,a0

 li a5,1

 mv a0,a5

 ble a4,a5,.L7

.L6:

 mul a0,a0,a5

 addi a5,a5,1

 bne a4,a5,.L6

.L7:

 ret

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

❖ Wanna guess this
one?

22

TODO
mystery:

 blt a0,zero,.L10

 addi sp,sp,-16

 sw ra,12(sp)

 sw s0,8(sp)

 mv s0,a0

 addi a5,a0,-1

 li a4,1

 mv a0,a4

 bleu a5,a4,.L8

 sw s1,4(sp)

 mv a0,a5

 call mystery

 mv s1,a0

 addi a0,s0,-2

 call mystery

 add a0,s1,a0

 lw s1,4(sp)

.L8:

 lw ra,12(sp)

 lw s0,8(sp)

 addi sp,sp,16

 jr ra

.L10:

 li a0,0

 ret

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Next Lecture: Hardware/Software Interface

❖ We’ve looked at some hardware topics and some
software topics (C & RISC-V)

❖ Thursday we are looking at the hardware/software
interface for the RISC-V ISA

▪ How does assembly run on hardware?

▪ How do we create hardware that runs assembly code?

❖ Hardware details abstracted, uses a lot of the
components previously talked about (Mux, Adders,
Incrementors, etc.)

▪ You will implement something like this in CIS 4710

23

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

HW/SW Interface

❖ Assembly is a middle ground between software and
hardware

❖ Software:

▪ It can still be very hard to read assembly code

▪ More complex coding languages translates into assembly

❖ Hardware:

▪ Hardware only needs to implement these “simple” instructions.

▪ Hardware does not need to implement a custom “calculate the
Fibonacci sequence” piece of hardware.

▪ Instructions translate directly into binary that hardware can read.

24

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Reminder: Instructions are bits

❖ An instruction fits in 32-bits (4-bytes, 4 memory locations)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
instruction in memory

25

li x0, #32

li x1, #16

li x2, #64

div x1, x2, x1

add x3, x3, x0

sub x0, x2, x3

x00 0x…….

x04 0x…….

x08 0x…….

x0C 0x…….

x10 0x…….

x14 0x…….

x18 0x…….

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

The Von Neumann Loop

❖ Von Neumann Processor essentially does:

▪ Fetch instruction at Program Counter

▪ Decode instruction

▪ Execute instruction & Update PC

▪ Repeat

❖ Critical Requirement

▪ Each iteration of this loop must appear atomic (All or nothing)

▪ Key word from programmer perspective: atomic

• Maintains sanity

▪ Key word from hardware perspective: appear

• Enables hardware to perform various tricks for performance >:]

26

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

An Idea of what we are doing next lecture:

27

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

More RISC-V References!

❖ More RISC-V References added to the course website

❖ Highly recommend you print out a copy of the
“Control Signals Description” handout

❖ RISC-V Single Cycle Processor is the diagram on the
previous slide, may also want to print this

28

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Lecture Outline

❖ RISC-V

❖ Penn-sim

❖ Peek at next time

❖ Aside: Sized Integers

❖ Binary File I/O

29

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Aside: sized integer types

❖ Quick question: How big is an int?

30

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Aside: sized integer types

❖ Quick question: How big is an int?

❖ For what we have said, an int is 4-bytes (32-bits)…
but this is not something guaranteed by the C standard.

31

Type Minimum Size

char 8-bits

short 16-bits

int 16-bits

long 32-bits

long long 64-bits

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Aside: sized integer types

❖ The C standard library provides

❖ Provides types that we can guarantee the size of:
▪ int32_t // 32-bit signed integer

▪ uint32_t // 32-bit unsigned integer

▪ int16_t

▪ uint16_t

▪ uint8_t

▪ etc.

❖ You will see these on the next homework assignment

32

#include <stdint.h>

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Lecture Outline

❖ RISC-V

❖ Penn-sim

❖ Peek at next time

❖ Aside: Sized Integers

❖ Binary File I/O

33

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

File I/O

❖ In the past, we have talked about memory, which is often
a type of “volatile storage”

▪ Volatile storage: requires power to maintain the data values. Loss
of power = loss of data

▪ Program memory is also deallocated at the end of the program.

▪ To get those values again, the program to compute them must be
run again

❖ Files: a type of permanent/long-term “non-volatile”
storage

▪ Non-volatile: retains data when the power is turned off

▪ Long-term: holds data that exists beyond the lifetime of a
program

34

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

File: Examples

❖ You’ve already been interacting with files

❖ Program files: (.c/.asm/.obj/etc.) are modified and persist
between program executions.

▪ While these contain information about how a program is setup, it
doesn’t contain all of program memory, which will change as the
program executes

❖ Editors (sublime/IntelliJ/vim/PowerPoint/etc.) are
programs that read and modify files based on user input

35

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

File Interface Metaphor: Tape Drives

❖ Programs usually interact with files following a similar file
interface:

▪ Functions that model a sequential access device like magnetic
tape drives

36

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

File Interface Metaphor: Tape Drives

❖ Example File Operations:

▪ Open a file for reading or writing (usually starting at the beginning
of the file)

▪ Read/Write the file

• Each read/write advances the number of bytes read or written

▪ Rewind: start at beginning again

▪ Others

37

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

File Interface Metaphor: Streams

❖ Another (more modern) abstraction is to think of I/O in
terms of “streams”

❖ Stream:

▪ A sequence of bytes that flows to and from a device

▪ We do not have access to whole file at once

• (some files are too big to fit inside of memory easily)

• Files are not stored entirely contiguously.

38

Another way to think of this is that it is an “iterator” over the file contents (sort of).

The iterator can read the current data, overwrite the current data, reposition, etc.

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

C Stream Functions (1 of 3)

39

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

C Stream Functions (2 of 3)

40

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

C Stream Functions (3 of 3)

❖ Some stream functions (complete list in stdio.h):

41

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

C Stream Error Checking/Handling

42

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Terminal input/output

❖ C defines three file streams for terminal input/output

▪ Defined in <stdio.h>

▪ Opened at program start by default

▪ stdin: standard input (console)

▪ stdout: standard output (console, for normal output)

▪ stderr: standard error (console, for error output)

❖ The following are equivalent

43

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Demo: copy file program

❖ Well Written file posted on website as copy_file.c

❖ Things to do when dealing with C stream I/O

▪ Eventually we will hit the end of file, need to handle that

▪ Must ask for a number of bytes/elements to be read.

▪ If possible, best practice is to request for a chunk of
bytes/elements at a time (Not applicable in this class)

44

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Other Functions

❖ Many other functions not covered in lecture (not enough
time). Feel free to look up others and use them

❖ Some examples:

▪ int feof(FILE* f);

• check for end of file

▪ void rewind(FILE *f);

• start back at the beginning of file

▪ long ftell(FILE* f);

• gives the current position into the file

▪ int fseek(FILE* f, long offset, int whence);

• Reposition where we are in the file

45

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Binary files & Serialization

❖ So far this lecture has implicitly assumed we are working
with files that hold text (characters)

❖ Binary files also exist where data isn’t stored as
characters. (object files are an example)

❖ Some data/data-structures make more sense to be stored
in binary through a process called serialization.

46

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Serialization Example:

❖ Posted on course website

▪ read_floats.c

▪ write_floats.c

❖ Notes:

▪ Don’t have to read/write an array, can read/write only one
“element”

▪ Trying to open these files in an editor will not be readable

47

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Endianness

❖ There is one byte at each address location

▪ For multi-byte data, how do we order it in memory?

▪ Data should be kept together, but what order should it be?

▪ Example, store the 4-byte (32-bit) int:
0x A1 B2 C3 D4

❖ The order of the bytes in memory is called endianness

▪ Big endian vs little endian

48

Most significant Byte Least significant Byte

Each byte has its own address

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Endianness

❖ Consider our example 0x A1 B2 C3 D4

❖ Big endian

▪ Least significant byte has highest address

▪ Looks the most like what we would read

▪ The standard for storing information on files/the network

❖ Little Endian

▪ Least significant byte has lowest address

▪ What your VM probably uses

49

Note how the hex digits within a byte are still in the same order

Least significant Byte

Each byte has its own address

0x2000 0x2001 0x2002 0x2003

A1 B2 C3 D4

0x2000 0x2001 0x2002 0x2003

D4 C3 B2 A1

Least significant byte

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

50

pollev.com/tqm

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

51

pollev.com/tqm

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Endianness: Why it matters

❖ Since machines may store things in different byte
orderings, it causes problems when they share files or
communicate over the network.

❖ A standard ordering is used for storing binary data, big
endian (often called Network ordering).

❖ Need to make sure that we store bytes in network byte
ordering when we serialize data

52

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

Endianness functions

❖ There are some functions out there that convert byte
orderings

▪ htons() -> Host to Network short (16 bits)

• Converts from Host byte ordering to network byte ordering

▪ ntohs() -> Network to Host short (16 bits)

• Converts from network byte ordering to host byte ordering

❖ “Network byte order” is big endian. Your “host” machine
is little endian

❖ More info in <arpa/inet.h>

❖ Variants also exist for 32 bit conversion
53

CIS 2400, Fall 2024L16: Sim & Single CycleUniversity of Pennsylvania

❖ Finish implementing the following C function:

❖ What would the reverse look like? htons()
54

Practice Time

uint16_t ntohs(uint16_t to_convert) {

 uint16_t res = 0;

 // you may find these useful:

 // 0xFF (eight 1 bits integer constant)

 // | (bitwise or)

 // & (bitwise and)

 // >> (right shift)

 // << (left shift)

 return res;

}

	Default Section
	Slide 1: RISC-V Sim & Single Cycle Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Logistics
	Slide 4: Logistics Pt. 2
	Slide 5: Lecture Outline
	Slide 6: RISC-V Directives
	Slide 7: LC4 Example .asm file
	Slide 8
	Slide 9: Pseudo-Instructions & Register Aliases
	Slide 10: Pseudo-Instructions & Register Aliases
	Slide 11: More Sample RISC-V Program
	Slide 12: More RISC-V Directives
	Slide 13: Lecture Outline
	Slide 14: ASM Files
	Slide 15: Text Files
	Slide 16: ASM -> OBJ Process
	Slide 17: penn-sim
	Slide 18: penn-sim Commands Pt. 1
	Slide 19: PennSim Commands Pt. 2
	Slide 20: Lecture Outline
	Slide 21
	Slide 22
	Slide 23: Next Lecture: Hardware/Software Interface
	Slide 24: HW/SW Interface
	Slide 25: Reminder: Instructions are bits
	Slide 26: The Von Neumann Loop
	Slide 27: An Idea of what we are doing next lecture:
	Slide 28: More RISC-V References!
	Slide 29: Lecture Outline
	Slide 30: Aside: sized integer types
	Slide 31: Aside: sized integer types
	Slide 32: Aside: sized integer types
	Slide 33: Lecture Outline
	Slide 34: File I/O
	Slide 35: File: Examples
	Slide 36: File Interface Metaphor: Tape Drives
	Slide 37: File Interface Metaphor: Tape Drives
	Slide 38: File Interface Metaphor: Streams
	Slide 39: C Stream Functions (1 of 3)
	Slide 40: C Stream Functions (2 of 3)
	Slide 41: C Stream Functions (3 of 3)
	Slide 42: C Stream Error Checking/Handling
	Slide 43: Terminal input/output
	Slide 44: Demo: copy file program
	Slide 45: Other Functions
	Slide 46: Binary files & Serialization
	Slide 47: Serialization Example:
	Slide 48: Endianness
	Slide 49: Endianness
	Slide 50
	Slide 51
	Slide 52: Endianness: Why it matters
	Slide 53: Endianness functions
	Slide 54

