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Poll: how are you?

❖ Any Questions?
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Logistics

❖ Midterm: Soontm 

▪ Edge cases need to be looked at, and a few files need to be 
rescanned

▪ I hope tonight

❖ HW07 is out and due this Friday at midnight

▪ Should have everything you need after this lecture

▪ Autograder is out

▪ Simulator is out

❖ HW08 comes out this Friday/weekend
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Logistics Pt. 2

❖ Office Hours this week

▪ No Office Hours on Halloween (Thursday)

▪ Reduced TA presence at office hours the day after (Friday)

❖ Check-in06 out later this week

❖ Election happening soon

▪ No lecture on Tuesday next week. 
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Lecture Outline

❖ Von Neuman & Processor Start

❖ RISCV Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”
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This Lecture: Hardware/Software Interface

❖ We’ve looked at some hardware topics and some 
software topics (C & RISC-V)

❖ Today we are looking at the hardware/software interface 
for the RISC-V ISA

▪ How does assembly run on hardware?

▪ How do we create hardware that runs assembly code?

❖ Hardware details abstracted, uses a lot of the 
components previously talked about (Mux, Adders, 
Incrementors, etc.)

▪ You will implement something like this in CIS 4710
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HW/SW Interface

❖ Assembly is a middle ground between software and 
hardware

❖ Software:

▪ It can still be very hard to read assembly code

▪ More complex coding languages translates into assembly

❖ Hardware:

▪ Hardware only needs to implement these “simple” instructions.

▪ Hardware does not need to implement a custom “calculate the 
Fibonacci sequence” piece of hardware.

▪ Instructions translate directly into binary that hardware can read.
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Reminder: Instructions are bits

❖ An instruction fits in 32-bits (4-bytes, 4 memory locations)

❖ These instructions are stored in memory and accessed 
sequentially

▪ When we trace through the code, we are just accessing the next
instruction in memory

8

li x0, #32

li x1, #16

li x2, #64

div x1, x2, x1

add x3, x3, x0

sub x0, x2, x3

x00 0x…….

x04 0x…….

x08 0x…….

x0C 0x…….

x10 0x…….

x14 0x…….

x18 0x…….

Index #
(Address)

Information
(Data)
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The Von Neumann Loop

❖ Von Neumann Processor essentially does:

▪ Fetch instruction at Program Counter

▪ Decode instruction

▪ Execute instruction & Update PC

▪ Repeat

❖ Critical Requirement

▪ Each iteration of this loop must appear atomic (All or nothing)

▪ Key word from programmer perspective: atomic

• Maintains sanity

▪ Key word from hardware perspective: appear

• Enables hardware to perform various tricks for performance >:]
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An Idea of what we are doing :
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More RISC-V References!

❖ More RISC-V References added to the course website

❖ Highly recommend you print out a copy of the
“Control Signals Description” handout

❖ RISC-V Single Cycle Processor is the diagram on the 
previous slide, may also want to print this
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Lecture Outline

❖ Von Neuman & Processor Start

❖ RISCV Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”
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Aside: bit selecting syntax

❖ Assume we have a 32-bit pattern called X

▪ X:

❖ We can refer to a specific subsection
of X with the syntax X[n:m]

▪ X[31:0] // all 31 bits

▪ X[2:0] // 3 least most significant bits

▪ X[19:15] // 5 bits in the middle
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Fetch & Decode

❖ First & second step: Fetch an instruction and decode it

▪ Read instruction at PC in memory (stored as 32 bits)

▪ From those 32-bits, outputs signals to
control the processor to execute
the instruction.

▪ Common exam question: implement
part of the decoder with logic gates.
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Fetch & Decode: ADDI x5, x10, 1

❖ Throughout this lecture, we will assume we just fetched 
the instruction ADDI x5, x10, 1 and decide what 
the control signals for this should be

❖ We have fetched and decoded the
instruction, now we must execute it

15



CIS 2400, Fall 2024L17:  Single CycleUniversity of Pennsylvania

Register File

❖ Array of the 32 general purpose processor registers x0 - x32

❖ The registers used are always at the same position in the 
instruction encoding.

❖ Not a typical “File” on a computer

▪ (We will talk about regFile.WE later
this lecture)

16



CIS 2400, Fall 2024L17:  Single CycleUniversity of Pennsylvania

ALU: Arithmetic Logic Unit

❖ Performs Arithmetic and Logical operations

▪ Where most instructions perform their “work”

❖ Use Control Signals to decide

▪ what operation is performed

▪ what the inputs are
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ALU Input Mux: ADDI x5, x10, 1

❖ ALUInputMux.CTL

▪ This signals decide what should be used as input for the ALU 
(thing that does most arithmetic / logical operations)

❖ How to decide signals generally:

▪ Look at the options available for this control signal
(Single Cycle handout or Control Signal Description handout) 

▪ Determine which signal matches up for
the current instruction

❖ ADDI Example:

▪ Do we use an rs2 or an immediate for ADDI?

▪ From the encoding directly

▪ so AluInputMux.CTL is 1
18
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Control Signals Description Handout

❖ Can use the Control Signals Description Handout to look 
up signals

❖ ADDI: Do we use an rs2 or do we use
the bits from the instruction encoding? 

❖ Then ALUInputMux.CTL should be 1
19
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ALU: ADDI x5, x10, 1

❖ ALU.CTL decides which arithmetic/logical operation to 
perform.

▪ 36 different options: look at the control signals description sheet

❖ ADDI operation is C = A + B, but B is sign extended from 
the immediate, So ALU.CTL is 0
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Branch Unit

❖ Updates PC

❖ PCMux.CTL: decides how PC is updated
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Previous PC

1: test then
  PC = PC + 4
  or
  PC = PC + se(TARG12)

2: PC += se(TARG20 << 1)

3: PC = PC + 4

0: PC is output of ALU
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Branch Unit: ADDI x5, x10, 1

❖ How does ADDI x5, x10, 1 update the PC?

▪ PC = PC + 4 so, PCMux.CTL is 3
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Previous PC

1: test then
  PC = PC + 4
  or
  PC = PC + se(TARG12)

2: PC += se(TARG20 << 1)

3: PC = PC + 4

0: PC is output of ALU
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Data Memory

❖ Contains the data memory of our program

❖ Takes in the:

▪ Address of the data to access

▪ What data to write at that address

❖ Outputs the data at the
specified address

❖ DATA.WE decides if we are updating
any data in memory.

▪ Does ADDI update any data in memory?

▪ No, so DATA.WE for ADD is 0
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Data Memory (cont.)

❖ DATA.WE decides if we are updating
any data in memory.

▪ Not shown with ADDI instruction:
DATA.WE is 4 bits. 

❖ Why is DATA.WE 4-bits?

▪ We can write 0, 1, 2, or 4-bytes
to data memory.

▪ Each byte we could write will have
“its” own WE bit to determine if we write
that byte.

▪ E.g. if we wanted to write all 4-bytes of data
input, then DATA.WE would be 0b1111 (15)
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Register File: regFile.WE

❖ regFile.WE: write-enable for the
register file. If we are writing to a
register it should be 1, 0 otherwise

▪ ADD writes to a register, so regFile.WE is 1
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regInputMux.CTL

❖ Decides what gets written back to the register file

▪ 0 = output of ALU

▪ 1 = 4-bytes of data memory

▪ 2 = 1-byte of data memory

▪ 3 = 2-bytes of data memory

▪ 4 = PC + <something>

❖ What does ADDI
store into a register?

▪ Output of ALU, so for ADDI
regInputMux.CTL = 0

26
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PCAddMux.CTL

❖ When we store the PC to the register file, we also have to 
add something to it. This decides what we add to the PC 
value that would get written back to the register file

27

Previous PC

To the
regInputMux
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PCAddMux.CTL

❖ When we store the PC to the register file, we also have to 
add something to it. This decides what we add to the PC 
value that would get written back to the register file

❖ What does ADDI do with the
PC value stored to register file?

▪ It doesn’t store the PC into the register file.

▪ If we look at the diagram given our other signals, the output of 
this is unused.

▪ We can mark this signal as X
(unused) for the ADD instruction

▪ Will not always be X, sometimes
it will be 0 or 1.

▪ Other signals can be X too
28

Previous PC

To the
regInputMux
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The Complete Picture
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Questions?
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Reminder: Circuits are not Code

❖ We are dealing with circuits, not software

▪ All components are “working” all the time.

▪ We may not be using their output all the time though.

❖ WE Signals always matter, we never “don’t care” about 
them

▪ Example: ADDI and DATA.WE

• ADDI doesn’t use data memory at all,
but the data address and data input will still
be some value (which may be garbage)

• We do NOT want to write garbage to memory
so DATA.WE should be 0
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CMOS Examples #1

32

❖ What are the control signals for the LUI instruction?
▪ 7 different control signals questions on PollEv

❖ Probably want to pull up the Control Signals Description, 
RISC-V Encoding, and Single Cycle Sheet

❖ If you are reading the slides after lecture and want to go 
over this, should probably watch the lecture recording

pollev.com/tqm
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“Single Cycle”

❖ This whole Lecture I’ve been talking about processor with 
the term “Single Cycle”

▪ This means that one instruction is executed in one clock cycle.

▪ That means the length of the program is directly proportional to 
the number of instructions executed

❖ “Single Cycle” is a convenient way for programmers to 
think about the processor, but most current processors 
are not like this

▪ More in CIS-5710 (Or a special topic at the end of the semester)
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Poll: how are you?

❖ Any Questions On Registration?
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