
CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

RISC-V Single Cycle
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Poll: how are you?

❖ Any Questions?

2

pollev.com/tqm

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Logistics

❖ Midterm: Soontm

▪ Edge cases need to be looked at, and a few files need to be
rescanned

▪ I hope tonight

❖ HW07 is out and due this Friday at midnight

▪ Should have everything you need after this lecture

▪ Autograder is out

▪ Simulator is out

❖ HW08 comes out this Friday/weekend

3

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Logistics Pt. 2

❖ Office Hours this week

▪ No Office Hours on Halloween (Thursday)

▪ Reduced TA presence at office hours the day after (Friday)

❖ Check-in06 out later this week

❖ Election happening soon

▪ No lecture on Tuesday next week.

4

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Lecture Outline

❖ Von Neuman & Processor Start

❖ RISCV Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”

5

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

This Lecture: Hardware/Software Interface

❖ We’ve looked at some hardware topics and some
software topics (C & RISC-V)

❖ Today we are looking at the hardware/software interface
for the RISC-V ISA

▪ How does assembly run on hardware?

▪ How do we create hardware that runs assembly code?

❖ Hardware details abstracted, uses a lot of the
components previously talked about (Mux, Adders,
Incrementors, etc.)

▪ You will implement something like this in CIS 4710

6

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

HW/SW Interface

❖ Assembly is a middle ground between software and
hardware

❖ Software:

▪ It can still be very hard to read assembly code

▪ More complex coding languages translates into assembly

❖ Hardware:

▪ Hardware only needs to implement these “simple” instructions.

▪ Hardware does not need to implement a custom “calculate the
Fibonacci sequence” piece of hardware.

▪ Instructions translate directly into binary that hardware can read.

7

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Reminder: Instructions are bits

❖ An instruction fits in 32-bits (4-bytes, 4 memory locations)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
instruction in memory

8

li x0, #32

li x1, #16

li x2, #64

div x1, x2, x1

add x3, x3, x0

sub x0, x2, x3

x00 0x…….

x04 0x…….

x08 0x…….

x0C 0x…….

x10 0x…….

x14 0x…….

x18 0x…….

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

The Von Neumann Loop

❖ Von Neumann Processor essentially does:

▪ Fetch instruction at Program Counter

▪ Decode instruction

▪ Execute instruction & Update PC

▪ Repeat

❖ Critical Requirement

▪ Each iteration of this loop must appear atomic (All or nothing)

▪ Key word from programmer perspective: atomic

• Maintains sanity

▪ Key word from hardware perspective: appear

• Enables hardware to perform various tricks for performance >:]

9

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

An Idea of what we are doing :

10

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

More RISC-V References!

❖ More RISC-V References added to the course website

❖ Highly recommend you print out a copy of the
“Control Signals Description” handout

❖ RISC-V Single Cycle Processor is the diagram on the
previous slide, may also want to print this

11

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Lecture Outline

❖ Von Neuman & Processor Start

❖ RISCV Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”

12

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Aside: bit selecting syntax

❖ Assume we have a 32-bit pattern called X

▪ X:

❖ We can refer to a specific subsection
of X with the syntax X[n:m]

▪ X[31:0] // all 31 bits

▪ X[2:0] // 3 least most significant bits

▪ X[19:15] // 5 bits in the middle

13

00000000000101010000001010010011

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Fetch & Decode

❖ First & second step: Fetch an instruction and decode it

▪ Read instruction at PC in memory (stored as 32 bits)

▪ From those 32-bits, outputs signals to
control the processor to execute
the instruction.

▪ Common exam question: implement
part of the decoder with logic gates.

14

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Fetch & Decode: ADDI x5, x10, 1

❖ Throughout this lecture, we will assume we just fetched
the instruction ADDI x5, x10, 1 and decide what
the control signals for this should be

❖ We have fetched and decoded the
instruction, now we must execute it

15

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Register File

❖ Array of the 32 general purpose processor registers x0 - x32

❖ The registers used are always at the same position in the
instruction encoding.

❖ Not a typical “File” on a computer

▪ (We will talk about regFile.WE later
this lecture)

16

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

ALU: Arithmetic Logic Unit

❖ Performs Arithmetic and Logical operations

▪ Where most instructions perform their “work”

❖ Use Control Signals to decide

▪ what operation is performed

▪ what the inputs are

17

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

ALU Input Mux: ADDI x5, x10, 1

❖ ALUInputMux.CTL

▪ This signals decide what should be used as input for the ALU
(thing that does most arithmetic / logical operations)

❖ How to decide signals generally:

▪ Look at the options available for this control signal
(Single Cycle handout or Control Signal Description handout)

▪ Determine which signal matches up for
the current instruction

❖ ADDI Example:

▪ Do we use an rs2 or an immediate for ADDI?

▪ From the encoding directly

▪ so AluInputMux.CTL is 1
18

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Control Signals Description Handout

❖ Can use the Control Signals Description Handout to look
up signals

❖ ADDI: Do we use an rs2 or do we use
the bits from the instruction encoding?

❖ Then ALUInputMux.CTL should be 1
19

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

ALU: ADDI x5, x10, 1

❖ ALU.CTL decides which arithmetic/logical operation to
perform.

▪ 36 different options: look at the control signals description sheet

❖ ADDI operation is C = A + B, but B is sign extended from
the immediate, So ALU.CTL is 0

20

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Branch Unit

❖ Updates PC

❖ PCMux.CTL: decides how PC is updated

21

Previous PC

1: test then
 PC = PC + 4
 or
 PC = PC + se(TARG12)

2: PC += se(TARG20 << 1)

3: PC = PC + 4

0: PC is output of ALU

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Branch Unit: ADDI x5, x10, 1

❖ How does ADDI x5, x10, 1 update the PC?

▪ PC = PC + 4 so, PCMux.CTL is 3

22

Previous PC

1: test then
 PC = PC + 4
 or
 PC = PC + se(TARG12)

2: PC += se(TARG20 << 1)

3: PC = PC + 4

0: PC is output of ALU

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Data Memory

❖ Contains the data memory of our program

❖ Takes in the:

▪ Address of the data to access

▪ What data to write at that address

❖ Outputs the data at the
specified address

❖ DATA.WE decides if we are updating
any data in memory.

▪ Does ADDI update any data in memory?

▪ No, so DATA.WE for ADD is 0

23

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Data Memory (cont.)

❖ DATA.WE decides if we are updating
any data in memory.

▪ Not shown with ADDI instruction:
DATA.WE is 4 bits.

❖ Why is DATA.WE 4-bits?

▪ We can write 0, 1, 2, or 4-bytes
to data memory.

▪ Each byte we could write will have
“its” own WE bit to determine if we write
that byte.

▪ E.g. if we wanted to write all 4-bytes of data
input, then DATA.WE would be 0b1111 (15)

24

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Register File: regFile.WE

❖ regFile.WE: write-enable for the
register file. If we are writing to a
register it should be 1, 0 otherwise

▪ ADD writes to a register, so regFile.WE is 1

25

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

regInputMux.CTL

❖ Decides what gets written back to the register file

▪ 0 = output of ALU

▪ 1 = 4-bytes of data memory

▪ 2 = 1-byte of data memory

▪ 3 = 2-bytes of data memory

▪ 4 = PC + <something>

❖ What does ADDI
store into a register?

▪ Output of ALU, so for ADDI
regInputMux.CTL = 0

26

P
C

 +
 ?

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

PCAddMux.CTL

❖ When we store the PC to the register file, we also have to
add something to it. This decides what we add to the PC
value that would get written back to the register file

27

Previous PC

To the
regInputMux

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

PCAddMux.CTL

❖ When we store the PC to the register file, we also have to
add something to it. This decides what we add to the PC
value that would get written back to the register file

❖ What does ADDI do with the
PC value stored to register file?

▪ It doesn’t store the PC into the register file.

▪ If we look at the diagram given our other signals, the output of
this is unused.

▪ We can mark this signal as X
(unused) for the ADD instruction

▪ Will not always be X, sometimes
it will be 0 or 1.

▪ Other signals can be X too
28

Previous PC

To the
regInputMux

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

The Complete Picture

29

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Questions?

30

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Reminder: Circuits are not Code

❖ We are dealing with circuits, not software

▪ All components are “working” all the time.

▪ We may not be using their output all the time though.

❖ WE Signals always matter, we never “don’t care” about
them

▪ Example: ADDI and DATA.WE

• ADDI doesn’t use data memory at all,
but the data address and data input will still
be some value (which may be garbage)

• We do NOT want to write garbage to memory
so DATA.WE should be 0

31

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

CMOS Examples #1

32

❖ What are the control signals for the LUI instruction?
▪ 7 different control signals questions on PollEv

❖ Probably want to pull up the Control Signals Description,
RISC-V Encoding, and Single Cycle Sheet

❖ If you are reading the slides after lecture and want to go
over this, should probably watch the lecture recording

pollev.com/tqm

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

“Single Cycle”

❖ This whole Lecture I’ve been talking about processor with
the term “Single Cycle”

▪ This means that one instruction is executed in one clock cycle.

▪ That means the length of the program is directly proportional to
the number of instructions executed

❖ “Single Cycle” is a convenient way for programmers to
think about the processor, but most current processors
are not like this

▪ More in CIS-5710 (Or a special topic at the end of the semester)

33

CIS 2400, Fall 2024L17: Single CycleUniversity of Pennsylvania

Poll: how are you?

❖ Any Questions On Registration?

34

pollev.com/tqm

	Default Section
	Slide 1: RISC-V Single Cycle Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Logistics
	Slide 4: Logistics Pt. 2
	Slide 5: Lecture Outline
	Slide 6: This Lecture: Hardware/Software Interface
	Slide 7: HW/SW Interface
	Slide 8: Reminder: Instructions are bits
	Slide 9: The Von Neumann Loop
	Slide 10: An Idea of what we are doing :
	Slide 11: More RISC-V References!
	Slide 12: Lecture Outline
	Slide 13: Aside: bit selecting syntax
	Slide 14: Fetch & Decode
	Slide 15: Fetch & Decode: ADDI x5, x10, 1
	Slide 16: Register File
	Slide 17: ALU: Arithmetic Logic Unit
	Slide 18: ALU Input Mux: ADDI x5, x10, 1
	Slide 19: Control Signals Description Handout
	Slide 20: ALU: ADDI x5, x10, 1
	Slide 21: Branch Unit
	Slide 22: Branch Unit: ADDI x5, x10, 1
	Slide 23: Data Memory
	Slide 24: Data Memory (cont.)
	Slide 25: Register File: regFile.WE
	Slide 26: regInputMux.CTL
	Slide 27: PCAddMux.CTL
	Slide 28: PCAddMux.CTL
	Slide 29: The Complete Picture
	Slide 30: Questions?
	Slide 31: Reminder: Circuits are not Code
	Slide 32: CMOS Examples #1
	Slide 33: “Single Cycle”
	Slide 34: Poll: how are you?

