
CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C Refresher & C to RISC-V
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any Questions?

2

pollev.com/cis2400

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Logistics

3

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ Pointers, Memory Allocation

▪ Macros:

• Constants vs. Function-like Macros

• Evaluation Pitfalls

❖ C to RISC-V
▪ Purpose of Translating C to Assembly

▪ Performance, Memory Control

❖ Function Calls in RISC-V

▪ The Registers

▪ Argument Passing

▪ Return Values

▪ The Frame and Returning from Functions
4

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Pointers Revisited

❖ Pointers are used to refer to locations in Memory

❖ Pointers have a corresponding type if

▪ We know what is stored at the location in memory.

▪ We know how large it is.

5

int main() {
// Initializing variables

char c = 5;

short s = 10;
int i = 15;

long l = 20;

// Initializing pointers

char *p_c = &c;

short *p_s = &s;
int *p_i = &i;

long *p_l = &l;

}

All types here have different sizes

}
All types here have the same size

}

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Pointers Revisited

6

int main() {

// Initializing variables
char c = 5;

short s = 10;

int i = 15;
long l = 20;

// Initializing pointers
char *p_c = &c;

short *p_s = &s;

int *p_i = &i;
long *p_l = &l;

}

All types here have different sizes
}

All types here have the same size

}
Why? The ‘&’ operator returns the

address of the corresponding
variable.

On a given machine, all addresses are the same size—usually 32 or 64 bits, depending on the
architecture. The difference arises when we dereference an address, as we need to know both

how much memory to access and how the values are organized within that memory.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Pointers Revisited

7

typedef struct {

int id;
int salary;

char grade;

} Employee;

int main() {

// Initialize an instance of the struct
Employee emp = {1, 50000.0, 'A'};

// Create a pointer to the struct
Employee *p_emp = &emp;

Employee cpy = *p_emp;

return 0;

}

Understanding how values are organized within memory is then imperative in understanding
how structs and other larger data structures are populated when their memory is retrieved.

As an example, we might receive
9 bytes of data when we
dereference this.

Is id the first 4 bytes, salary
the next 4, and grade the next
byte? We need to know.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Pointers Revisited

❖ Pointers are used to refer to locations in Memory

❖ Pointers do not have a corresponding type if

▪ we’re treating memory as just an array of bytes, without regard to the
specific type of data stored there (e.g. memcpy, duplicating a file)

▪ Or to support generics (e.g. qsort, not important for you yet)

8

void *my_memcpy(void *dest, const void *src, size_t n) {

// Cast void pointers to char pointers for byte-by-byte copying

char *d = (char *)dest;

char *s = (char *)src;

// Copy each byte from src to dest

for (size_t i = 0; i < n; i++) {
 d[i] = s[i];

}

return dest;

}

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Pointers Revisited

9

void *my_memcpy(void *dest, const void *src, size_t n) {

// Cast void pointers to char pointers

char *d = (char *)dest;

char *s = (char *)src;

// Copy each byte from src to dest

for (size_t i = 0; i < n; i++) {
 d[i] = s[i];

}

return dest;

}

We’re limited by the “type system” when retrieving information, so we need to cast
values to char when we want to access individual bytes and store them elsewhere.

Unfortunately, this limits us to perform memory moves a singular byte at a time.

Void * pointers allow us to
pass addresses around
when we are agnostic
about what they store

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Heap Revisited

❖ Functions like malloc and free let us manage memory
directly.

▪ If you need to store something outside ‘the stack’, you can use
malloc to allocate space on the heap.

▪ When you're finished with that memory, you use free to release it
back to the system.

10

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Heap Revisited

11

fee()

foo()

Each function has its own respective frame.

Each functions frame holds, typically, arguments for
the function, variables created within the function,
and other state (which we’ll see soon).

Heap Since frames are temporary and cleared when a
function returns, we store information that

needs to persist in the heap.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Heap Revisited

❖ Functions like malloc and free let us manage memory
directly.

❖ Functions the interact with the heap are:

malloc(), free(), calloc(), and realloc()

12

When you want all memory allocated to be ‘zero-d’ out.

When you want more memory after the heap gave you some already.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Macros

❖ We’ve seen how Macros are handled by the Pre-Processor.

13

#include <stdio.h>

#define PI 3.14159
#define SQUARE(x) ((x) * (x))

int main() {
int radius = 5;

double area = PI * SQUARE(radius);

printf("The area is: %.2f\n", area);

return 0;

}

file.c clang-15 -E file.c -o file.i

printf declaration is here now and PI is replaced by 3.14159

But this is a new type of macro for us: #define SQUARE(x) ((x) * (x)

// Standard library headers are expanded here

int printf(const char *__format, ...);

// Macros are replaced with their definitions:

int main() {
int radius = 5;

double area = 3.14159 * ((radius) * (radius));

printf("The area is: %.2f\n", area);

return 0;

}

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Function-like Macros

14

#include <stdio.h>

#define PI 3.14159
#define SQUARE(x) ((x) * (x))

int main() {
int radius = 5;

double area = PI * SQUARE(radius);

printf("The area is: %.2f\n", area);

return 0;

}

// Standard library headers are expanded here

int printf(const char *__format, ...);

// Macros are replaced with their definitions:

int main() {
int radius = 5;

double area = 3.14159 * ((radius) * (radius));

printf("The area is: %.2f\n", area);

return 0;

}

SQUARE(radius) is replaced with ((radius) *
(radius)).

The macro expansion is text-based, meaning it’s a
direct substitution rather than an actual function.

This might lead to head aches when writing them...

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Poll: how are you?

❖ What is the value of a that will be printed after the
Function-Like Macro is executed?

15

pollev.com/cis2400

#include <stdio.h>
#define DOUBLE(x) ((x) + (x))

int main() {
int a = 3;
DOUBLE(a++);
printf("%d\n", a);
return 0;

}

A) 3

B) 4

C) 5

D) 6

E) Not sure.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Poll: how are you?

❖ What is the value of a that will be printed after the
Function-Like Macro is executed?

16

pollev.com/cis2400

#include <stdio.h>
#define DOUBLE(x) ((x) + (x))

int main() {
int a = 3;
DOUBLE(a++);
printf("%d\n", a);
return 0;

}

A) 3

B) 4

C) 5

D) 6

E) Not sure.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Poll: how are you?

❖ What is the value of a that will be printed after the
Function-Like Macro is executed?

17

pollev.com/cis2400

#include <stdio.h>
#define DOUBLE(x) ((x) + (x))

int main() {
int a = 3;
DOUBLE(a++);
printf("%d\n", a);
return 0;

}

#include <stdio.h>

int main() {
int a = 3;
((a++) + (a++));
printf("%d\n", a);
return 0;

}

Since a++ is evaluated twice, a is incremented twice in total!

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Poll: how are you?

❖ What is the value of a that will be printed after the
Function-Like Macro is executed?

18

pollev.com/cis2400

#include <stdio.h>
#define DOUBLE(x) ((x) + (x))

int main() {
int a = 3;
DOUBLE(a++)
printf("%d\n", a);
return 0;

}

A) 3

B) 4

C) 5

D) 6

E) Not sure.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Macros and Multiple Evaluation

❖ Expansion of Macros can result in unexpected side affects.

19

#define SQUARE1(x) ((x) * (x))

#define SQUARE2(x) (x * x)

int x = SQUARE1(10);
int y = SQUARE2(10);

These two ‘SQUARE’ Macros seem to do the same thing but only one it correct!

int x = ((10) * (10));

int y = (10 * 10);

int x = ((10 + 9) * (10 + 9));

int y = (10 + 9 * 10 + 9);

#define SQUARE1(x) ((x) * (x))

#define SQUARE2(x) (x * x)

int x = SQUARE1(10 + 9);
int y = SQUARE2(10 + 9);

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Macros and Multiple Evaluation

❖ Expansion of Macros can result in unexpected side affects.

20

#define SQUARE(x) ((x) * (x))

int main() {

int radius = 5;

double area = PI * SQUARE(radius++);
return 0;

}

file.c clang-15 -E file.c -o file.i

int main() {

int radius = 5;
double area = 3.14159 * ((radius++) * (radius++));

printf("The area is: %.2f\n", area);
return 0;

}

This is why it's essential to treat functions in C and macros as different things, especially when
they contain expressions with parameters that could have side effects if evaluated multiple

times.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Lecture Outline

❖ C Refresher

▪ Pointers, Memory Allocation

▪ Macros:

• Constants vs. Function-like Macros

• Evaluation Pitfalls

❖ C to RISC-V
▪ Purpose of Translating C to Assembly

▪ Performance, Memory Control

❖ Function Calls in RISC-V

▪ The Registers

▪ Argument Passing

▪ Return Values

▪ The Frame and Returning from Functions
21

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

❖ Why learn code translation if compilers do it for us?

▪ Systems programming demands precise control over memory and
speed. We need to be confident that our code does what we expect
it to.

▪ Knowing how compilers make translation decisions is essential.

• Allows you to use the compiler to your advantage.

▪ Familiarity with conventions for saving state, passing, and returning
values across functions is critical.

22

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

23

int add(int x, int y){
 return x + y;
}

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

As an example, lets’ see why one line of C
become 13 lines of RISC-V.

Quick Refresher:

1. Caller
• The function who called the function

2. Callee
• The function called.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

24

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

Why is sp used at the start and at the end?

Why do we store ra and s0 and then load
them again at the end?

What really is ra and s0?

What really is a0 and a1?

How are values returned from functions?

Questions to consider…

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Registers

25

x0/zero

x5/t0

x10/a0

x15/a5

x1/ra

x6/t1

x11/a1

x16/a6

x2/sp

x7/t2

x12/a2

x17/a7

x3/gp

x8/s0/fp

x13/a3

x18/s2

x4/tp

x9/s1

x14/a4

x19/s3

x20/s4 x21/s5 x22/s6 x23/s7 x24/s8

x25/s9 x26/s10 x27/s11 x28/t3 x29/t4

x30/t5 x31/t6

Yes, we don’t care about these two.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

❖ Argument Registers

▪ These pass arguments to functions

▪ Only two registers ‘return’ values.

Registers

26

x10/a0

x15/a5

x11/a1

x16/a6

x12/a2

x17/a7

x13/a3 x14/a4

int add(int x, int y){
 return x + y;
}

When we enter the add routine, we expect x in a0
and y in a1.

When we return from the add routine, we expect
the result in a0.

Argument & Return

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

27

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

What really is a0 and a1?

Now we know, here we are storing and re-’loading’
the arguments passed into the routine, add.

}
Here, we store the result in a0 because that’s
where the caller expects it.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Registers

28

x8/s0/fp x18/s2x9/s1 x19/s3 x20/s4

x21/s5 x22/s6 x23/s7 x24/s8 x25/s9

x26/s10 x27/s11

❖ S Registers (Callee-Saved)

▪ These registers must be restored to their original values when a
function returns.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

29

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

s0 is saved @ 8(sp)

s0 is loaded from @ 8(sp)

If this function were to modify any others
s registers, it would have to do the same
thing we see here.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Registers

30

x1/ra x2/sp x8/s0/fp pc
It’s transparent
because we can’t
interact with it
‘directly’.

❖ Return Address (ra)

▪ Tells us what we should set the PC to when we are done with a
routine.

▪ It is what makes “returning” from a function possible.

❖ Stack Pointer (sp)

▪ Points to the bottom of the stack.

▪ Allows us to do memory accesses (loads/stores) relative to the
‘bottom’ of the stack.

❖ Frame Pointer (s0, fp)
▪ Points to the beginning of a function's “stack” or “Frame”.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

31

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

The first thing this procedure does is
make space for it’s stack. The stack
‘grows down’ so we subtract from the
sp.

caller
old sp

new sp

(old sp - 16)

add

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

32

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

Now, we store these registers
ra & s0 relative to the new
new sp!

sp + 12

sp + 8

This shows you what byte is “relative” to sp.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

33

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

Now, we store these registers
ra & s0 relative to the new
new sp!

ra

s0

sp + 12

sp + 8

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

34

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

Now, we store these registers
ra & s0 relative to the new
new sp!

Return Address

s0

sp + 12

sp + 8

If s0 is a frame pointer and we save it - who’s
frame pointer are we saving?

The callers frame pointer!

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

35

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

Now, we store these registers
ra & s0 relative to the new
new sp!

Return Address

Caller Frame Pointer

sp + 12

sp + 8

If s0 is a frame pointer and we save it - who’s
frame pointer are we saving?

The callers frame pointer!

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

36

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

sp + 16 is the the start of our frame!

Return Address

Caller Frame Pointer

sp + 12

sp + 8

s0 is updated to be add’s frame pointer

sp + 16 s0

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

37

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

Return Address

Caller Frame Pointer

sp + 12

sp + 8

sp + 16 s0

Although, we are now using memory accesses
relative to s0, let’s rewrite them using sp for
simplicity.

sw a0, -12(s0)

sw a1, -16(s0)

sw a0, 4(sp)

sw a1, 0(sp)

Using this, we can see where a0 and a1 are stored more easily.

a1

a0 sp + 4

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

38

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

Return Address

Caller Frame Pointer

sp + 12

sp + 8

sp + 16 s0

Now, a0 holds the result.

a1

a0 sp + 4

We restore the ra.

We restore the s0.

Quick note:
Why would we
ever need to
‘restore the ra’?

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

39

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

add

Return Address

Caller Frame Pointer

sp + 12

sp + 8

sp + 16

a1

a0 sp + 4

We restore the old sp.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

40

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

sp

Return Address

Caller Frame Pointer

a1

a0

Caller’s Frame

s0

And now, we’re done and return.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

C to RISC-V

41

Fun 1

RA to Fun 0

Fun 0 Frame Pointer

Args,vars,etc.

Fun 2

RA to Fun 1

Fun 1 Frame Pointer

Args,vars,etc.

Fun 3

RA to Fun 2

Fun 2 Frame Pointer

Args,vars,etc.

Function Frames:
• store the caller’s Frame Pointer
• store the return address

How does the callee know what the correct
return address is?

jal rd,targ20

jalr rd,imm12(rs1)

These instructions save pc + 4 into rd.

jal ra, fun4
//next instruction

When we enter fun4, ra
holds the address of the

instruction after this jal
in the callers routine.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

For those who want to practice…

42

main:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

li a1, 1

mv a0, a1

call add

li a0, 0

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

add:

addi sp, sp, -16

sw ra, 12(sp)

sw s0, 8(sp)

addi s0, sp, 16

sw a0, -12(s0)

sw a1, -16(s0)

lw a0, -12(s0)

lw a1, -16(s0)

add a0, a0, a1

lw ra, 12(sp)

lw s0, 8(sp)

addi sp, sp, 16

ret

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

What does the compiler say?

43

int add(int x, int y){

 return x + y;

}

int main(){

 add(1,1);

}

add:

add a0, a0, a1

ret

main:

li a0, 0

ret

Why?

Well, we never use the result of add! So why waste time calling it?

Why do we load 0 into a0?

#define EXIT_SUCCESS 0Take a look at this Macro defined in stdlib.h

Yup.

CIS 2400, Fall 2024L19: C Refresher & C to RISC-VUniversity of Pennsylvania

Next time!

❖ More C to RISC-V!

44

	Default Section
	Slide 1: C Refresher & C to RISC-V Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Logistics
	Slide 4: Lecture Outline
	Slide 5: Pointers Revisited
	Slide 6: Pointers Revisited
	Slide 7: Pointers Revisited
	Slide 8: Pointers Revisited
	Slide 9: Pointers Revisited
	Slide 10: Heap Revisited
	Slide 11: Heap Revisited
	Slide 12: Heap Revisited
	Slide 13: Macros
	Slide 14: Function-like Macros
	Slide 15: Poll: how are you?
	Slide 16: Poll: how are you?
	Slide 17: Poll: how are you?
	Slide 18: Poll: how are you?
	Slide 19: Macros and Multiple Evaluation
	Slide 20: Macros and Multiple Evaluation
	Slide 21: Lecture Outline
	Slide 22: C to RISC-V
	Slide 23: C to RISC-V
	Slide 24: C to RISC-V
	Slide 25: Registers
	Slide 26: Registers
	Slide 27: C to RISC-V
	Slide 28: Registers
	Slide 29: C to RISC-V
	Slide 30: Registers
	Slide 31: C to RISC-V
	Slide 32: C to RISC-V
	Slide 33: C to RISC-V
	Slide 34: C to RISC-V
	Slide 35: C to RISC-V
	Slide 36: C to RISC-V
	Slide 37: C to RISC-V
	Slide 38: C to RISC-V
	Slide 39: C to RISC-V
	Slide 40: C to RISC-V
	Slide 41: C to RISC-V
	Slide 42: For those who want to practice…
	Slide 43: What does the compiler say?
	Slide 44: Next time!

