
CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

C to RISC-V II
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any Questions?

2

pollev.com/cis2400

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Logistics

3

❖ Please start HW9 as soon as you can.

❖ This one is much more time consuming than the others.

❖ There are only three weeks left…

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Lecture Outline

❖ Application Binary Interface

▪ X86, ARM, & RISC-V

❖ Register Convention
▪ Frame Pointer and Return Address

▪ Frame Records

▪ Prologue & Epilogue

❖ Procedure Calling Convention

▪ Argument Passing

▪ Returning Values

❖ Linking and Loading
▪ Absolute Addressing

▪ Relative Addressing

4

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Application Binary Interface

❖ Defines how programs and routines interact.

❖ ‘Calling Convention’
▪ Specifies how parameters are passed to functions and how arguments are

received from different routines.

5

For example, you’ve never compiled the C standard libraries yourself, yet the functions you
write can call them seamlessly, even though your code and the libraries were not compiled

together.

This means that if the ABI changes, we would need to recompile our code to ensure
compatibility, even if no changes were made to the source code itself.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Where do x86 and Arm fall?

❖ x86
▪ Has only 15 General Purpose Registers + Instruction Pointer (RIP)

▪ Passing Arguments and the Stack’s general structure are not dissimilar to
what we’ve seen in RISC-V but it is different. Particularly in how values are
passed.

❖ Arm
▪ There are 30 general-purpose registers but depending on the processors

“Mode” we can access less or more.

▪ The Frame Structure is also different.

▪ Procedure calling is also very different from RISC-V.

• You can not save the Return Address in anything other than the ‘Link Register’ (lr)

6

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

The Difference isn’t just Hardware.

7

The differences between x86, ARM, and RISC-V go beyond just
hardware or physical registers—they also involve how memory
is organized, how functions are called, and how arguments are

passed to routines.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Lecture Outline

❖ Application Binary Interface

▪ X86, ARM, & RISC-V

❖ Register Convention
▪ Frame Pointer and Return Address

▪ Frame Records

▪ Prologue & Epilogue

❖ Procedure Calling Convention

▪ Argument Passing

▪ Returning Values

❖ Linking and Loading
▪ Absolute Addressing

▪ Relative Addressing

8

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Register Conventions

❖ Agreement on Register Usage:

▪ Routines must know which registers are used for specific
purposes

❖ Consistent Saving of Registers:
▪ If registers need to be saved, routines must agree on where to

store them.

• How else would routines locate arguments/variables?

❖ Provides a known location for return values.

❖ Allows routines to ‘reliably’ return to the caller.

9

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers

10

x0/zero

x5/t0

x10/a0

x15/a5

x1/ra

x6/t1

x11/a1

x16/a6

x2/sp

x7/t2

x12/a2

x17/a7

x3/gp

x8/s0/fp

x13/a3

x18/s2

x4/tp

x9/s1

x14/a4

x19/s3

x20/s4 x21/s5 x22/s6 x23/s7 x24/s8

x25/s9 x26/s10 x27/s11 x28/t3 x29/t4

x30/t5 x31/t6

Yes, we don’t care about these two.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers: The Agreement

11

x1/ra x2/sp x8/s0/fp

sp

Frame

Return Address

Caller Frame Pointer

fp Frame Pointer Role:
➢ Points to the top of the bottom

most stack frame

Frame Record Structure:
➢ First value: Holds the return

address.
➢ Second value: Points to the

previous frame.

Linked List of Frames:
➢ Each frame links back to its caller.

Always

4 bytes

each.

Frame Record: Red Portion of Frame

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers: The Agreement

12

RA to Fun 0

Fun 0 Frame Pointer

Args,vars,etc.

RA to Fun 1

Fun 1 Frame Pointer

Args,vars,etc.

RA to Fun 2

Fun 2 Frame Pointer

Args,vars,etc.

Frame Pointer Role:
➢ Points to the bottom most stack frame,

initiating a linked list of frames.
➢ prev_frame = *(fp – 8)

Linked List of Frames:
➢ Each frame links back to its caller.

sp

fp

This is how a debugger figures out which
functions called each other, letting you see

the exact path that led to your 10-hour bug.

We say that the debugger “walks the stack”.

Other than storing caller state, what else
might this be useful for?

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Example of Walking the Stack: imessage

13

This is how a debugger figures out which
functions called each other, letting you see

the exact path that led to your 10-hour bug.
We say that the debugger “walks the stack”.

Understanding the
specific functions

here isn’t
important; what

matters is that each
function is traced
up the stack using
the same method.

Aw a qsort!}

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Prologue and Epilogue

❖ Prologue

▪ Setting Up Function’s Frame and
Storing Callee-Saved Registers

14

Foo:
addi sp, sp, -VAL
sw ra, (VAL – 4)(sp)
sw s0, (VAL – 8)(sp)
addi s0, sp, VAL

//awesome instructions
//amazing instructions
//even better instructions
//meh instructions
//ready to return!

lw ra, (VAL – 4)(sp)
lw s0, (VAL – 8)(sp)
addi sp, sp, VAL
jalr x0, ra, 0

Initial Stack Allocation If more memory

is needed, the

stack pointer will

be lowered.

(VAL – 4) & (VAL – 8) put ra and s0 in the
correct memory location always.

}

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Prologue and Epilogue

❖ Prologue

▪ Setting Up Function’s Frame and
Storing Callee-Saved Registers

❖ Epilogue
▪ Cleaning up Function’s Frame

and restoring Callee-Saved
Registers

15

Foo:
addi sp, sp, -VAL
sw ra, (VAL – 4)(sp)
sw s0, (VAL – 8)((sp)
addi s0, sp, VAL

//awesome instructions
//amazing instructions
//even better instructions
//meh instructions
//ready to return!

lw ra, (VAL – 4)(sp)
lw s0, (VAL – 8)(sp)
addi sp, sp, VAL
jalr x0, ra, 0

If more memory

is needed, the

stack pointer will

be lowered.

}

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Poll: how are you?

What should the values of VAL1 and VAL2
be to set up the frame and exit the
routine correctly?

A)
VAL1 = 0

VAL2 = 4

B)
VAL1 = 4

VAL2 = 0

C)
VAL1 = 8

VAL2 = 4

D)
VAL1 = 8

VAL2 = 4
16

pollev.com/cis2400

Foo:
addi sp, sp, -8
sw ra, VAL1(sp)
sw s0, VAL2(sp)
addi s0, sp, VAL

//awesome instructions
//amazing instructions
//even better instructions
//meh instructions
//ready to return!

lw ra, VAL1(sp)
lw s0, VAL2(sp)
addi sp, sp, 8
jalr x0, ra, 0

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Poll: how are you?

What should the values of VAL1 and VAL2
be to set up the frame and exit the
routine correctly?

17

pollev.com/cis2400

Foo:
addi sp, sp, -8
sw ra, VAL1(sp)
sw s0, VAL2(sp)
addi s0, sp, VAL

//awesome instructions
//amazing instructions
//even better instructions
//meh instructions
//ready to return!

lw ra, VAL1(sp)
lw s0, VAL2(sp)
addi sp, sp, 8
jalr x0, ra, 0

sp

8 Bytes}

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Poll: how are you?

What should the values of VAL1 and VAL2
be to set up the frame and exit the
routine correctly?

18

pollev.com/cis2400

Foo:
addi sp, sp, -8
sw ra, VAL1(sp)
sw s0, VAL2(sp)
addi s0, sp, VAL

//awesome instructions
//amazing instructions
//even better instructions
//meh instructions
//ready to return!

lw ra, VAL1(sp)
lw s0, VAL2(sp)
addi sp, sp, 8
jalr x0, ra, 0

Return Address

Caller Frame Pointer
sp

8 Bytes}

If I want to put the Old FP here, the offset from
SP must be 0.

VAL2 = 0

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Poll: how are you?

What should the values of VAL1 and VAL2
be to set up the frame and exit the
routine correctly?

19

pollev.com/cis2400

Foo:
addi sp, sp, -8
sw ra, VAL1(sp)
sw s0, VAL2(sp)
addi s0, sp, VAL

//awesome instructions
//amazing instructions
//even better instructions
//meh instructions
//ready to return!

lw ra, VAL1(sp)
lw s0, VAL2(sp)
addi sp, sp, 8
jalr x0, ra, 0

Return Address

Caller Frame Pointer
sp

8 Bytes}

If I want to put the RA here, the offset from SP
must be 4.

VAL1 = 4

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Poll: how are you?

What should the values of VAL1 and VAL2
be to set up the frame and exit the
routine correctly?

A)
VAL1 = 0

VAL2 = 4

B)
VAL1 = 4

VAL2 = 0

C)
VAL1 = 8

VAL2 = 4

D)
VAL1 = 8

VAL2 = 4
20

pollev.com/cis2400

Foo:
addi sp, sp, -8
sw ra, VAL1(sp)
sw s0, VAL2(sp)
addi s0, sp, VAL

//awesome instructions
//amazing instructions
//even better instructions
//meh instructions
//ready to return!

lw ra, VAL1(sp)
lw s0, VAL2(sp)
addi sp, sp, 8
jalr x0, ra, 0

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

RISC-V’s Leniency

21

sp

Frame

Return Address

Caller Frame Pointer

fp

Official Verbiage: The frame pointer points to the Canonical Frame Address (CFA), which is the
stack pointer value at the function’s entry.

What does RISC-V tell us?

It is left to the 'platform' to determine the level of conformance with this convention.

The return address is located @ fp – 4

The previous frame pointer is @ fp – 8

specific hardware environment or operating system

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Lecture Outline

❖ Application Binary Interface

▪ X86, ARM, & RISC-V

❖ Register Convention
▪ Frame Pointer and Return Address

▪ Frame Records

▪ Prologue & Epilogue

❖ Procedure Calling Convention

▪ Argument Passing

▪ Returning Values

❖ Linking and Loading
▪ Absolute Addressing

▪ Relative Addressing

22

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

❖ Argument Registers

▪ These pass arguments to functions

▪ Only two registers ‘return’ values.

Argument Passing

23

x10/a0

x15/a5

x11/a1

x16/a6

x12/a2

x17/a7

x13/a3 x14/a4

Argument & Return

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

❖ What if Arguments don’t fit across all of these?

Registers

24

x10/a0

x15/a5

x11/a1

x16/a6

x12/a2

x17/a7

x13/a3 x14/a4

Argument & Return

Naïve Solution: Why not always just write values to the callee’s frame from the start
and then have the callee load them? This way, we never stress about this issue.

Registers are FAST. If arguments are already loaded into registers,
we can do arithmetic operations immediately. We can spend less

time waiting for the values to be loaded from memory.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Argument Passing: Just Enough

25

int function(int one, int two, int three, int four,
 int five, int six, int seven, int eight){
 //do nothing
}

function:
addi sp, sp, -48
sw ra, 44(sp)
sw s0, 40(sp)
addi s0, sp, 48
sw a0, -16(s0)
sw a1, -20(s0)
sw a2, -24(s0)
sw a3, -28(s0)
sw a4, -32(s0)
sw a5, -36(s0)
sw a6, -40(s0)
sw a7, -44(s0)

When we use all 8 arguments, we use all 8
registers, a0 – a7

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Argument Passing: Different Sizes

26

int function(char one, char two, char three, char four,
 short five, short six, short seven, short eight){
 //do nothing
}

function:
addi sp, sp, -32
sw ra, 28(sp)
sw s0, 24(sp)
addi s0, sp, 32
sb a0, -13(s0)
sb a1, -14(s0)
sb a2, -15(s0)
sb a3, -16(s0)
sh a4, -18(s0)
sh a5, -20(s0)
sh a6, -22(s0)
sh a7, -24(s0)

When we use all 8 arguments, we use all 8
registers, a0 – a7.

Even if the arguments are different types!

The only things that change are the
offsets and storing instructions.

Arguments up to 4 bytes in size are passed
with registers, or on the stack by value if no

registers are available.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Argument Passing: One Register Short

27

int function(int one, int two, int three, int four,
 int five, int six, int seven, int eight, int nine){
 //do nothing
}

function:
addi sp, sp, -48
sw ra, 44(sp)
sw s0, 40(sp)
addi s0, sp, 48
lw t0, 0(s0)
sw a0, -12(s0)
sw a1, -16(s0)
sw a2, -20(s0)
sw a3, -24(s0)
sw a4, -28(s0)
sw a5, -32(s0)
sw a6, -36(s0)
sw a7, -40(s0)

When we use 9 arguments, we use all 8
registers, a0 – a7, and the stack.

sp

Return Address

Caller Frame Pointer

fp/s0

Local Vars

lw t0, 0(s0)“Load the value above the frame”

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Argument Passing: One Register Short

28

int function(int one, int two, int three, int four,
 int five, int six, int seven, int eight, int nine){
 //do nothing
}

function:
addi sp, sp, -48
sw ra, 44(sp)
sw s0, 40(sp)
addi s0, sp, 48
lw t0, 0(s0)
sw a0, -12(s0)
sw a1, -16(s0)
sw a2, -20(s0)
sw a3, -24(s0)
sw a4, -28(s0)
sw a5, -32(s0)
sw a6, -36(s0)
sw a7, -40(s0)

sp

Return Address

Caller Frame Pointer

fp

Local Vars

int nine

These already have the arguments

The caller places the arguments at the end of
its own frame, allowing the callee to retrieve
any arguments that don’t fit in registers.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

What about Structs?

29

typedef struct {
int x;
int y;

} pair;

pair make_struct(int x, int y){
 return (pair){x, y};
}

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

30

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

a0 int x

a1 int y

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

31

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

int y

a0 int x

a1 int y

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

32

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

int y

a0 int x

a1 int y

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

33

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

int y

a0 int x

a1 int y

int x

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

34

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

int y

a0 int y

a1 int y

int x

int x

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

35

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

int y

a0 int y

a1 int y

int x

int y

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

36

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

int y

a0 int x

a1 int y

int x

int y

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

37

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

Return Address

Caller Frame Pointer

s0 - 4

s0 - 8

s0 - 12

s0 - 16

s0 - 20

s0 - 24

s0 - 28

s0 - 32

s0

int x

int y

a0 int x

a1 int y

int x

int y

This is the ‘struct’
being returned.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

38

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

a0 int x

a1 int y

This is the ‘struct’
being returned.

typedef struct {
int x;
int y;

} pair;

pair make_struct(int x, int y){
 return (pair){x, y};
}

Internally, this struct is treated as two separate
integers to be returned to the caller, rather

than as a single unit.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

The Official Verbiage

39

makestruct:
addi sp, sp, -32

//rest of prologue omit..

sw a0, -20(s0)
sw a1, -24(s0)
lw a0, -20(s0)
sw a0, -16(s0)
lw a0, -24(s0)
sw a0, -12(s0)
lw a0, -16(s0)
lw a1, -12(s0)

//rest of epilogue omit..

a0 int x

a1 int y

This is the ‘struct’
being returned.

Structs/Arrays up to 2 Words in size are
passed across two registers.

If only one register is available, the first
Word is passed in the register, and the

remaining Word goes on the stack.

If no registers are available or if it’s too
large, the entire structure or array is

passed on the stack.

This is called ‘Register Spilling’

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

40

typedef struct {
 char filename[255];
} filestr;

filestr makestruct(){
 return (filestr){};
}

This function returns a ‘filestr’ struct without
modifying the array. According to the rules

the callee should….

A) Create a copy of the struct in the callee’s frame, then copy it to the caller, even if the
array is empty.

B) Allocate space for the struct in the caller’s frame and then return.

C) Do nothing; the caller should have already allocated space for the struct, so the callee
only needs to create it

D) When is lecture over?

pollev.com/cis2400

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

41

typedef struct {
 char filename[255];
} filestr;

filestr makestruct(){
 return (filestr){};
}

This function returns a ‘filestr’ struct without
modifying the array. According to the rules

the callee should….

A) Create a copy of the struct in the callee’s frame, then copy it to the caller, even if the
array is empty.

This approach would be very inefficient. It involves unnecessary duplication
and copying, which wastes both time and memory.

Imagine if the struct used an array of 1<< 11 bytes, not very good.

pollev.com/cis2400

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

42

C) Allocate space for the struct in the caller’s frame and then return.

typedef struct {
 char filename[255];
} filestr;

filestr makestruct(){
 return (filestr){};
}

This function returns a ‘filestr’ struct without
modifying the array. According to the rules

the callee should….

pollev.com/cis2400

If the callee were to allocate space for the caller, it would break the standard
calling convention.

Additionally, the callee cannot directly modify the caller’s stack pointer , which
would be necessary to allocate space in the caller’s frame.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

43

B) Not do anything, the caller had to have made space for the struct already. All we do
is ‘create’ it.

If no registers are available or if it’s too large,
the entire structure or array is passed on the

stack.

There is no way to ‘pass’ something back to the caller, unless the caller already has
allocated space for the struct or array it expects.

typedef struct {
 char filename[255];
} filestr;

filestr makestruct(){
 return (filestr){};
}

This function returns a ‘filestr’ struct without
modifying the array. According to the rules

the callee should….

pollev.com/cis2400

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Let’s see the compiled code

44

typedef struct {
 char filename[255];
} filestr;

filestr makestruct(){
 return (filestr){};
}

makestruct:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
//prologue over

sw a0, -12(s0)
li a1, 0
li a2, 255
call memset

//epilogue start
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
ret

memset(void *b, int c, size_t len);

????

The memset() function writes len bytes of value c to the string
b.

a0 void *b

a1 int c

a2 size_t len

This means a0 is the address of the filestr struct in the caller!

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

45

typedef struct {
 char filename[255];
} filestr;

filestr makestruct(){
 return (filestr){};
}

makestruct:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
//prologue over

sw a0, -12(s0)
li a1, 0
li a2, 255
call memset

//epilogue start
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
ret

The call to memset zeros out the structs
char array in the caller. In this way, the

function does "create" the struct by setting
up its initial state, a zero’d out array.

Note: You weren’t expected to know that a `memset` call would be used here. However,
this behavior is defined in the C standard.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Registers and the Stack

46

typedef struct {
 char filename[255];
} filestr;

filestr makestruct(){
 return (filestr){};
}

int main() {
 mystruct cpy = makestruct();
}

makestruct:
//prologue omit

sw a0, -12(s0)
li a1, 0
li a2, 255
call memset

//epilogue omit

main:
addi sp, sp, -272
sw ra, 268(sp)
sw s0, 264(sp)
addi s0, sp, 272
addi a0, s0, -263
call makestruct
li a0, 0
lw ra, 268(sp)
lw s0, 264(sp)
addi sp, sp, 272
ret

Look at this huge stack allocation.

Here we set a0 = s0 – 263

We pass in the address of the struct’s location
in the caller’s memory implicitly. Even if the
function doesn’t take any arguments! wow.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

More Practice

47

typedef struct {
char a;
char b;
short size;

} smallstruct;

smallstruct make_smallstruct(){
 return (smallstruct){0,1,2};
}

make_smallstruct:
 //prologue omited

li a0, 0
sb a0, -12(s0)
li a0, 1
sb a0, -11(s0)
li a0, 2
sh a0, -10(s0)
lhu a0, -10(s0)
slli a0, a0, 16
lhu a1, -12(s0)
or a0, a0, a1

//epilogue omited

tldr; this struct is forced into a 32 bit register.

You can see this here.

}

total 4 bytes in size

“If it fits in a single register, put it in one”

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

More Official RISC-V Rules
❖ Procedures should not rely on stack-allocated data below

the current stack pointer, as it may not persist.

❖ The stack grows downwards (toward lower addresses).

❖ On procedure entry:

▪ The stack pointer must be aligned to a 128-bit boundary.

▪ The first argument passed on the stack is located at offset zero
from the stack pointer, with subsequent arguments stored at
higher addresses.

❖ Registers s0 to s11 must be preserved across procedure
calls.

❖ Floating-point registers are not preserved across calls
(not important for us).

48

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Lecture Outline

❖ Application Binary Interface

▪ X86, ARM, & RISC-V

❖ Register Convention
▪ Frame Pointer and Return Address

▪ Frame Records

▪ Prologue & Epilogue

❖ Procedure Calling Convention

▪ Argument Passing

▪ Returning Values

❖ Linking and Loading
▪ Absolute Addressing

▪ Relative Addressing

49

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Loading: Absolute Addressing
❖ What Are Absolute Addresses?

• Direct 32-bit addresses that refer to a fixed memory location.

• Used to load data or access specific memory locations.

500x00000000

0xffffffff
The Entire Memory Space

We can then, technically, load anything
if we have the correct address.

.data
message:
 .asciiz "Hello, World!"

If we want to use this string, we have to
load the address of it first.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Loading: Absolute Addressing
❖ What Are Absolute Addresses?

• Direct 32-bit addresses that refer to a fixed memory location.

• Used to load data or access specific memory locations.

51

.data
message:
 .asciiz "Hello, World!”

.text

.globl main
main:

lui a0, %hi(message)
addi a0, a0, %lo(message)
Call printf with
'message' address in a0

call printf

lui a0, %hi(message)

• loads the high 20 bits of the
message label’s address into a0.

addi a0, a0, %lo(message)

• loads the lower 12 bits of the
message label’s address into a0.

These two instructions allow you to construct
any 32-bit address. This is how programs load
values from the data segment.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Loading: PC - Relative Addressing
❖ What Are Relative Addresses?

• 32-bit addresses who’s location we only know ‘relative’ to the PC.

• Used to jump to labels/routines during runtime.

52

This allows the code to be position-independent

.text

main:
li a0, 1
jal ra, foo
li a1, 2
ret

foo:
li a0, 10
addi a0, a0, 5
jalr ra, ra, 0

If foo is always located below main, we can jump to it
using a relative offset from the current program counter

(PC).

We don’t need the exact address of foo; we just need
to know its position relative to main.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Loading: PC - Relative Addressing

53

This allows the code to be position-independent

.text

main:
li a0, 1
jal ra, foo
li a1, 2
ret

foo:
li a0, 10
addi a0, a0, 5
jalr ra, ra, 0

If foo is always located below main, we can jump to it
using a relative offset from the current program counter

(PC).

We don’t need the exact address of foo; we just need
to know its position relative to main.

pc += se(imm20<<1)What does jal do?

This means jumps have a limit for ‘how far’ we can jump to
a routine using if we only use jal.

This is approximately a ±1 MiB range relative to the PC.

If a routine is farther away, we can not just use a jal.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

What is a routine is farther away?

54

lui t0, Imm
jalr ra, Imm(t0)

JALR (Jump and Link Register) is designed to allow a
two-instruction sequence to jump to any 32-bit

absolute address.

auipc t0, Imm
jalr ra, Imm(t0)

lui (Load Upper Immediate) loads the upper 20 bits of the relative offset

jalr uses t0 as the base address and adds an offset to form the complete 32-bit offset.

This essentially allows us to jump almost anywhere.

This is another way to to jump to any 32-bit absolute
address.

Unfortunately, the ‘real functionality’ is a bit more complex than what’s shown in these slides.
However, the main idea remains the same.

CIS 2400, Fall 2024L20: RISC-V IIUniversity of Pennsylvania

Next time!

❖ More C to RISC-V with Travis!

55

	Default Section
	Slide 1: C to RISC-V II Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Logistics
	Slide 4: Lecture Outline
	Slide 5: Application Binary Interface
	Slide 6: Where do x86 and Arm fall?
	Slide 7: The Difference isn’t just Hardware.
	Slide 8: Lecture Outline
	Slide 9: Register Conventions
	Slide 10: Registers
	Slide 11: Registers: The Agreement
	Slide 12: Registers: The Agreement
	Slide 13: Example of Walking the Stack: imessage
	Slide 14: Prologue and Epilogue
	Slide 15: Prologue and Epilogue
	Slide 16: Poll: how are you?
	Slide 17: Poll: how are you?
	Slide 18: Poll: how are you?
	Slide 19: Poll: how are you?
	Slide 20: Poll: how are you?
	Slide 21: RISC-V’s Leniency
	Slide 22: Lecture Outline
	Slide 23: Argument Passing
	Slide 24: Registers
	Slide 25: Argument Passing: Just Enough
	Slide 26: Argument Passing: Different Sizes
	Slide 27: Argument Passing: One Register Short
	Slide 28: Argument Passing: One Register Short
	Slide 29: What about Structs?
	Slide 30: Registers and the Stack
	Slide 31: Registers and the Stack
	Slide 32: Registers and the Stack
	Slide 33: Registers and the Stack
	Slide 34: Registers and the Stack
	Slide 35: Registers and the Stack
	Slide 36: Registers and the Stack
	Slide 37: Registers and the Stack
	Slide 38: Registers and the Stack
	Slide 39: The Official Verbiage
	Slide 40
	Slide 41
	Slide 42: Registers and the Stack
	Slide 43
	Slide 44: Let’s see the compiled code
	Slide 45: Registers and the Stack
	Slide 46: Registers and the Stack
	Slide 47: More Practice
	Slide 48: More Official RISC-V Rules
	Slide 49: Lecture Outline
	Slide 50: Loading: Absolute Addressing
	Slide 51: Loading: Absolute Addressing
	Slide 52: Loading: PC - Relative Addressing
	Slide 53: Loading: PC - Relative Addressing
	Slide 54: What is a routine is farther away?
	Slide 55: Next time!

