
CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C++ & Safety
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Poll: how are you?

❖ On a scale of 1 (hate) to 5 (love), how do you feel about C
as a programming language?

2

pollev.com/tqm

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Administrivia

❖ Next Check-in:

▪ End of Semester Survey

▪ Due before next lecture (Tuesday)

❖ Next Lecture: Special topic from Joel about intro to
threads

❖ All Homework Assignments are out right now

3

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ const

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

4

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Poll: how are you?

❖ Why do you think we chose C as the programming
language for this course?

5

pollev.com/tqm

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C/C++?

❖ Common way of listing the languages: C/C++

❖ Common understanding of the language

▪ C++ is C but more

▪ C++ is a super set of C

❖ This understanding
is a pet-peeve of mine

7

C++

C

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C vs C++ (Timeline)

❖ What People Think

8

C C++

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C vs C++ (Timeline)

❖ More Detail (but a lot left out)

9

C
1972

K&R C
1978

ANSI C
1989

C99
1999

C w/
Classes
1982

C++
1985

C++98
1998

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C vs C++ (Timeline)

❖ More Detail (but a lot left out)

10

ANSI C
1989

C99
1999

C++98
1998

C++11
2011

C11
2011

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

C++14
2014

C++17
2017

C++20
2020

C++23
2023

C23
2023

C has adopted changes from C++
example: auto and nullptr in C23

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C vs C++ Examples

❖ old_c.c

▪ C has evolved since it was introduced in 1972

❖ c23.c

▪ C still gets updates adding new features

▪ Admittedly, the updates are small relative to other language
updates

❖ cpp23.cpp and stdin_echo.cpp

▪ Modern C++ is very different from C (Though most C is still legal!)

❖ cpp23_hello.cpp

▪ The fundamentals of the language are changing as well 11

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

12

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Hello World in C++

❖ Looks simple enough…

▪ Compilation command if you want to compile this yourself:

▪ Let’s walk through the program step-by-step to highlight some
differences

13

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return EXIT_SUCCESS;

}

g++-12 -Wall -g -std=c++23 -o helloworld helloworld.cpp

helloworld.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Poll: how are you?

❖ What does this code print?

14

pollev.com/tqm

#include <iostream>

#include <cstdlib>

using namespace std;

void modify_int(int x) {

 x = 5;

}

int main() {

 int num = 3;

 modify_int(num);

 cout << num << endl;

 return EXIT_SUCCESS;

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Let’s do a slightly more complex program

15

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

❖ string is part of the C++ standard library

▪ We still have to #include it

• No more char* !

▪ When we initialize any variable in C++, we use the {}

16

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 // ...

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

17

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 cout << "Who are you?" << endl;

 // ...

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

❖ Declares an empty string ("")

▪ You should must always initialize a variable with {} even if empty

18

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 cout << "Who are you?" << endl;

 string input {};

 // ...

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

❖ Reads from stdin (terminal input) into “input”

▪ This works for reading in numbers too

19

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 cout << "Who are you?" << endl;

 string input {};

 cin >> input;

 // ...

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

❖ Reads from stdin (terminal input) into “input”

▪ This works for reading in numbers too

20

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 cout << "Who are you?" << endl;

 string input {};

 cin >> input;

 // ...

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

❖ Can use == to compare strings

21

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 cout << "Who are you?" << endl;

 string input {};

 cin >> input;

 if (input == expected) {

 }

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

❖ Can chain << repeatedly

▪ Would also work for printing a lot of types

• (including integer and floating point types) 22

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 cout << "Who are you?" << endl;

 string input {};

 cin >> input;

 if (input == expected) {

 cout << "Hello " << input << "!" << endl;

 }

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Greeting C++

❖ Print to
cerr when
there is an
error.

❖ Also known
as stderr

❖ This case is
debatably
an error.

23

#include <iostream> // for cout, endl

#include <cstdlib> // for EXIT_SUCCESS

#include <string> // for string

using namespace std;

int main() {

 string expected {"Travis"};

 cout << "Who are you?" << endl;

 string input {};

 cin >> input;

 if (input == expected) {

 cout << "Hello " << input << "!" << endl;

 } else {

 cerr << "Who the hell are you????" << endl;

 }

 return EXIT_SUCCESS;

}

greeting.cpp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

24

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

STL Containers ☺

❖ A container is an object that stores (in memory) a
collection of other objects (elements)

▪ Implemented as class templates, so hugely flexible

▪ More info in C++ Primer §9.2, 11.2

❖ Several different classes of container

▪ Sequence containers (vector, deque, list, ...)

▪ Associative containers (set, map, multiset, multimap, bitset, ...)

▪ Differ in algorithmic cost and supported operations

25

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

vector

❖ A generic, dynamically resizable array

▪ https://cplusplus.com/reference/vector/vector/

▪ Elements are store in contiguous memory locations

• Can index into it like an array

• Random access is O(1) time

▪ Adding/removing from the end is cheap (amortized constant
time)

▪ Inserting/deleting from the middle or start is expensive (linear
time)

❖ Most common member function: push_back()

▪ Adds an element to the end of the vector

26

C++ equivalent of ArrayList

https://cplusplus.com/reference/vector/vector/

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Vector example

27

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[]) {

 vector<int> vec {6, 5, 4};

 vec.push_back(3);

 vec.push_back(2);

 vec.push_back(1);

 cout << "vec.at(0)" << endl << vec.at(0) << endl;

 cout << "vec.at(1)" << endl << vec.at(1) << endl;

 // iterates through all elements

 for (size_t i = 0U; i < vec.size(); ++i) {

 cout << vec.at(i) << endl;

 }

 return EXIT_SUCCESS;

}

Most containers are in a module of

the same name

Constructs a vector with

three initial elements

Add three integers to the vector

Print all the values in the array

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

range for loop

❖ Syntactic sugar similar to Java’s foreach

▪ declaration defines the loop variable

▪ expression is an object representing a sequence

• Strings, and most STL containers work with this

28

for (declaration : expression) {

 statements

}

string str{"hello"};

// prints out each character

for (char c : str) {

 cout << c << endl;

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

range for loop vector example

❖ If you need to iterate over every element in a sequence,
you should use a range for loop.

▪ Why? It is harder to mess it up that way

29

int main(int argc, char* argv[]) {

 vector<int> vec {6, 5, 4};

 vec.push_back(3);

 vec.push_back(2);

 vec.push_back(1);

 // iterates through all elements

 for (int element : vec) {

 cout << element << endl;

 }

 return EXIT_SUCCESS;

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Poll: how are you?

❖ What is the final value of v by the end of the main()
function?

30

pollev.com/tqm

#include <vector>

#include <iostream>

using namespace std;

void populate_vec(vector<int> v) {

 v.push_back(5950);

}

int main() {

 vector<int> v {};

 populate_vec(v);

 cout << v.size() << endl;

 for (size_t i = 0U; i < v.size(); ++i) {

 cout << v.at(i) << endl;

 }

 return EXIT_SUCCESS;

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ const

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

35

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

36

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x;

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x 5

y 10

Note: Arrow points
to next instruction.

When we use '&' in a type

declaration, it is a reference.

&var still is “address of var”

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

37

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x, z 5

y 10

Note: Arrow points
to next instruction.

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

38

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x, z 6

y 10

Note: Arrow points
to next instruction.

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

39

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

x, z 7

y 10

Note: Arrow points
to next instruction.

// Normal assignment

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

40

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1;

 return EXIT_SUCCESS;

}

x, z 10

y 10

Note: Arrow points
to next instruction.

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

41

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;

}

x, z 11

y 10

Note: Arrow points
to next instruction.

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

42

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

Parameters are attached

To variables provided by caller

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

43

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

44

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

45

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

46

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

5

Note: Arrow points
to next instruction.

(swap) tmp 5

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

47

void swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Polling Question

❖ What will happen when we run this?

A. Output "(3,3,3)"

B. Output "(3,3,2)"

C. Compiler error
 about arguments
 to foo (in main)

D. Compiler error
 about body of foo

E. None of the
 above
F. We’re lost…

48

void foo(int& x, int& y, int z) {

 z = y;

 x += 2;

 y = x;

}

int main(int argc, char* argv[]) {

 int a = 1;

 int b = 2;

 int& c = a;

 foo(a, b, c);

 cout << "(" << a << ", " << b

 << ", " << c << ")" << endl;

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

56

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Functions that sometimes fail

❖ It is pretty common to write functions that sometimes
fail. Sometimes they don’t return what is expected

❖ Consider we were building up a Queue data structure that
held strings, that could

▪ Add elements to the end of a sequence

• void

▪ Remove elements from the beginning of a sequence

▪ How do we design this function to handle the case where there
are no strings in the queue (e.g. it errors?)

57

void add(string data);

???? remove(????);

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Previous ways to handle failing functions

❖ Return an "invalid" value: e.g. if looking for an index,
return -1 if it can’t be found.

▪ What if there is no nice "invalid" state?

❖ C-style: return an error code or success/failure.
 Real output returned through output param

58

// what is an invalid string?

string remove();

bool remove(string* output);

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Aside: Java “Object” variables

❖ Does this java compile?

❖ What about this C++?

59

public static String foo() {

 return null;

}

string foo() {

 return nullptr;

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Aside: Java “Object” variables

❖ In high level languages (like java), object variables don’t
actually contain an object, they contain a reference to an
object.

▪ References in these languages can be null

60

String s = new String("Java");

String other = null;

main’s stack frame

s

other null "Java"

heap

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Aside: Java “Object” variables

❖ In C++, a string variable is itself a string object

61

string s{"C++"};

// does not do what you think it does

string other = nullptr;

main’s stack frame

s "C++" More on this idea when I
talk about pointers later

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Previous ways to handle failing functions

❖ Return a pointer to a heap allocated object, could return
nullptr on error

▪ Uses the heap when it is otherwise unnecessary

▪ Need to remember to delete (e.g. free()) the string

❖ Java style: throw an exception in the case of an error
 return the value as normal

▪ Exceptions not best for performance

▪ Exception catching not always the easiest to handle

62

string* remove();

string remove() {

 if (this->size() <= 0U) {

 throw std::out_of_range{"Error!"};

 }

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

std::optional

❖ optional<T> is a struct that can either:

▪ Have some value T
(optional<string> {"Hello!"})

▪ Have nothing
(nullopt)

❖ optional<T> effectively extends the type T to have a
"null" or "invalid" state

63

optional<string> foo() {

 if (/* some error */) {

 return nullopt;

 }

 return "It worked!";

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Using an optional

❖ If we call a function that returns an optional, we need to
check to see if it has a value or not

64

optional<string> foo() {

 if (/* some error */) {

 return nullopt;

 }

 return "It worked!";

}

int main() {

 optional<string> opt = foo();

 if (!opt.has_value()) {

 return EXIT_FAILURE;

 }

 string s = opt.value();

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

65

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

❖ What do you think it means for something to be a
“Systems Programming Language”?

66

pollev.com/tqm

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Systems Programming Definition

❖ Unfortunately, there is not a consistent definition:

▪ “Instead of producing software that services users, you write
software that provides services to computer hardware.”

• Or instead of for hardware: “software that is in service of other
software”.

▪ “Hardware / Machine / System specific. Would require rewriting
to bring to other systems”

▪ “Has properties of hardware in mind. Takes advantages of various
characteristics / interfaces of the system it runs on”

▪ “Knows and makes use of the tools provided by the operating
systems”

▪ “Working in resource or time constrained systems”

▪ “Low Level”

67

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Systems Programming Definition

❖ C++ is a systems programming language. As we can see,
“Systems Programming” does not have to mean:

▪ Strings and objects don’t exist

▪ Pointers everywhere

▪ Needing to explicitly allocate and deallocate memory for
everything

• Good to be aware of which memory allocations are being made, but
not needed all the time.

▪ Etc.

68

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

69

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ NSA: 2 years ago (Nov 10th, 2022)

70

Rust is not mentioned in this snippet, but mentioned somewhere else in the announcement

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ White House: 10 months ago (Feb 26th, 2024)

71

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Memory Safety CVE

❖ CVE = Common Vulnerabilities and Exposures

72This is from Microsoft research showing how most vulnerabilities come from memory issues

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Memory Safety

❖ Memory Safety is dominating discussion on Systems
programming languages (C, C++, Rust, Zig, Nim, D, …)

❖ What is memory safety?

❖ Broadly two types:

▪ Temporal Safety: making sure you don’t access “objects” that are
destroyed, or in invalid states

▪ Spatial Safety: making sure you do not access memory you either
shouldn’t access or accessing them in the wrong ways

73

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Temporal Safety C Example

❖ Here is an example in C where is the issue?

74

int main(int argc, char** argv) {

 int* ptr = malloc(sizeof(int));

 assert(ptr != NULL);

 *ptr = 5;

 // do stuff with ptr

 free(ptr);

 printf("%d\n", *ptr);

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

75

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5};

 int& first = v.front();

 cout << first << endl;

 v.push_back(6);

 cout << v.size() << endl;

 cout << first << endl;

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Temporal Safety

❖ Here is an example in C++ where is the issue?

76

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

 v1.push_back(v2.front());

}

int main() {

 vector<int> x{3, 4, 5};

 func(x, x);

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Spatial Safety

❖ C (and C++) enforce types on variables, they are statically
typed

❖ C and C++ can easily get around the type system though:

78

int main() {

 int x = 3;

 float f1 = x; // converts bits to floating point rep

 float f2 = *(float*)&x; // copies bits

 printf("%f\n", f1); // these two print

 printf("%f\n", f2); // different things

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Spatial Safety

❖ C (and C++) enforce types on variables, they are statically
typed

❖ C and C++ can easily get around the type system though:

79

int main() {

 string s = "Howdy :)";

 vector<int> v = *retinterpret_cast<vector<int>*>(&s);

 v.push_back(3);

 // this code probably crashes before getting here

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Aside: unions

❖ A union is a type that can have more than one possible
representations in the same memory position

80

union {

 float f;

 int i;

};

f = 3.14; // assigns a float value to the union

printf("%d\n", i); // try to interpret the same memory as an int

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Spatial Safety

❖ A union is a type that can have more than one possible
representations in the same memory position

82

// common design pattern, return a struct that either holds

// an error or the expected value, with a bool to indicate

struct parer_result {

 bool is_valid;

 union {

 char* error message;

 struct parsed_command* cmd;

 };

};

struct parser_result parse_cmd(const char* input);

int main() {

 struct parser_result = parse_cmd("…");

 struct parsed_command = *(parser_result.cmd)

}

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Spatial Safety

❖ Sometimes violating spatial safety is "needed"
▪ To support “Generics” in C, we often cast to/from void*

▪ Can be used for some cool stuff like this fast inverse square root
algorithm (don’t do this, it is not fast anymore):

84

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Spatial Safety

❖ Spatial safety includes index out of bounds.

❖ What is wrong here?

❖ Here?

85

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!
No IndexOutOfBounds

Hope for segfault

write(STDOUT_FILENO, "Hello!\n", 1024);

char buf[7];

strcpy(buf, "Hello!\n");

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Has C++ Been Fixing These?

❖ C++ has been giving replacements for these features that
are safer.

▪ Instead of union, C++ has optional, variant, any and others

▪ Instead of C arrays, there is the vector and array type

❖ Is this C++ safe?

❖ C++ Keeps adding new features that are better and safer
but adding in unchecked-unsafe ways to use them.
Usually, the argument is for performance

86

vector<int> v {2, 3, 5, 6, 11, 13};

v[1000] = 7; // is this safe?

v.at(1000) = 0; // above: no, this: yes

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C++ Backwards compatibly

❖ Even with Modern C++ adding new features to get better
and safer, many people stick to bad habits that are kept in
C++ for backwards compatibility

87

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Counter Point: How serious is this safety?

❖ A counterpoint to the safety stuff is that:

▪ There is already a lot of tools to help detect these issues
(Valgrind, Address Sanitizer, UB Sanitizer, etc.)

▪ These issues are common, but they are not the biggest issues of
Security

❖ Notable Recent Security Issues:

▪ Heartbleed

▪ Spectre & Meltdown

▪ Log4j

▪ XZ utils backdoor

▪ Social Engineering in general

88

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Other Point: Productivity

❖ These issues also affect how productive C++ developers
are. These are added spots for bugs and can make coding
more difficult

❖ Some initial studies report improved productivity from
moving from C++ to Rust

❖ Other languages also have more modern tooling support

▪ Compilation

▪ Package Management

▪ Etc.

89

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Lecture Outline

❖ What’s Next?

90

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C++ Successor Languages

❖ Because of the issue with safety, 2022 has been called
“the year of the C++ successor Languages”

❖ Just in 2022, three successor languages were announced:

▪ Val (now called Hylo)

▪ Carbon

▪ cppfront (sometimes called cpp2)

❖ There have been many languages before:

▪ D

▪ Go

▪ Rust

▪ Others: Nim, Zig, Swift, etc. 91

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C and C++ are used everywhere

❖ Many things are written largely/primarily in C++ or C

▪ The Adobe suite (Photoshop, etc)

▪ The Microsoft office suite (word, PowerPoint, etc.)

▪ The libre office suite (FOSS word, PowerPoint, etc)

▪ Chromium (Core of most web browsers, Edge, Opera, Chrome,
etc)

▪ Firefox

▪ Most Database implementations

▪ Tensorflow & Pytorch

▪ gcc, clang & llvm (which is the backbone for many compilers)

▪ Game Engines (Unreal, Unity, etc.)

92

Most of this information is from Jason Turner’s “C++ is 40… Is C++ DYING?” video
https://www.youtube.com/watch?v=hxjSpasg3gk

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

C and C++ are used everywhere

❖ Regularly ranks in top used ~5-10 programming languages

❖ Many people still use C++

▪ Estimates from JetBrains

▪ ~1,157,000 professional developers use C++ as their primary
language

▪ ~2,492,000 professional developers regularly use C++

93

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Programming Language Adoption

94

For better or for worse, C++ already exists and has a bunch of work behind it.
Moving to another thing is going to take time and money, but is not impossible

Screenshot from Herb Sutter’s Plenary in cppcon 2023: https://www.youtube.com/watch?v=8U3hl8XMm8c
It is an interesting talk, but his cppcon 2022 or c++now 2023 talks may be better starting points for those interested

https://www.youtube.com/watch?v=8U3hl8XMm8c

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Migration

❖ Some organizations are (at least in part) trying to move
from C / C++

❖ The Linux kernel has incorporated Rust into it

▪ It never allowed C++ into the kernel

❖ Microsoft and Mozilla Firefox are putting in a lot of effort
to start training some employees to program in Rust.

❖ Some places are investigating the language “Zig”

95

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Migration Example: Python

❖ Python made breaking changes just moving from version
2.7 to 3.0

❖ Python 2.7
was extended
in support for
a long time.
~10 years

❖ It took a
REALLY long time for many people to give up Python 2.7
and move to Python 3.

❖ How long will it take to move away from C++?
96

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

Evolution

❖ C++ is evolving to try and accommodate for some of these
issues

▪ Epochs & safety profiles

❖ Some passionate C++ developers are trying to make a new
language/syntax.

▪ Cppfront (cpp2) by Herb Sutter: a new syntax on C++ that fixes a
lot of broken defaults and makes writing C++ simpler. Still
compiles with and can directly invokes existing C++ code

▪ Circle: a C++ compiler that supports many new features including
ones related to safety, but these features are not std C++

▪ Carbon by Google: a new language with strong C++
interoperability. Still very early on and not runnable

97

CIS 2400, Fall 2024L23: C++ & SafetyUniversity of Pennsylvania

What’s next?

❖ The situation is developing, we will see how things evolve
over time ☺

❖ There is a lot of inertia towards moving away from C++
and a lot of things look promising

▪ I think Rust and Zig both look very very cool and I wish I could
teach you one of those languages and we could just use them.

▪ Cppfront (or carbon or circle) looks the most promising. They have
the advantage of easier integration into existing C++ ecosystems
and making C++ safer and easier to use. It is compatible with most
existing C++ tools and code-bases.

98

	Default Section
	Slide 1: C++ & Safety Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Poll: how are you?
	Slide 7: C/C++?
	Slide 8: C vs C++ (Timeline)
	Slide 9: C vs C++ (Timeline)
	Slide 10: C vs C++ (Timeline)
	Slide 11: C vs C++ Examples
	Slide 12: Lecture Outline
	Slide 13: Hello World in C++
	Slide 14: Poll: how are you?
	Slide 15: Let’s do a slightly more complex program
	Slide 16: Greeting C++
	Slide 17: Greeting C++
	Slide 18: Greeting C++
	Slide 19: Greeting C++
	Slide 20: Greeting C++
	Slide 21: Greeting C++
	Slide 22: Greeting C++
	Slide 23: Greeting C++
	Slide 24: Lecture Outline
	Slide 25: STL Containers
	Slide 26: vector
	Slide 27: Vector example
	Slide 28: range for loop
	Slide 29: range for loop vector example
	Slide 30: Poll: how are you?
	Slide 35: Lecture Outline
	Slide 36: References
	Slide 37: References
	Slide 38: References
	Slide 39: References
	Slide 40: References
	Slide 41: References
	Slide 42: Pass-By-Reference
	Slide 43: Pass-By-Reference
	Slide 44: Pass-By-Reference
	Slide 45: Pass-By-Reference
	Slide 46: Pass-By-Reference
	Slide 47: Pass-By-Reference
	Slide 48: Polling Question
	Slide 56: Lecture Outline
	Slide 57: Functions that sometimes fail
	Slide 58: Previous ways to handle failing functions
	Slide 59: Aside: Java “Object” variables
	Slide 60: Aside: Java “Object” variables
	Slide 61: Aside: Java “Object” variables
	Slide 62: Previous ways to handle failing functions
	Slide 63: std::optional
	Slide 64: Using an optional
	Slide 65: Lecture Outline
	Slide 66
	Slide 67: Systems Programming Definition
	Slide 68: Systems Programming Definition
	Slide 69: Lecture Outline
	Slide 70: What else is going on?
	Slide 71: What else is going on?
	Slide 72: Memory Safety CVE
	Slide 73: Memory Safety
	Slide 74: Temporal Safety C Example
	Slide 75: Temporal Safety
	Slide 76: Temporal Safety
	Slide 78: Spatial Safety
	Slide 79: Spatial Safety
	Slide 80: Aside: unions
	Slide 82: Spatial Safety
	Slide 84: Spatial Safety
	Slide 85: Spatial Safety
	Slide 86: Has C++ Been Fixing These?
	Slide 87: C++ Backwards compatibly
	Slide 88: Counter Point: How serious is this safety?
	Slide 89: Other Point: Productivity
	Slide 90: Lecture Outline
	Slide 91: C++ Successor Languages
	Slide 92: C and C++ are used everywhere
	Slide 93: C and C++ are used everywhere
	Slide 94: Programming Language Adoption
	Slide 95: Migration
	Slide 96: Migration Example: Python
	Slide 97: Evolution
	Slide 98: What’s next?

