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Poll: how are you?

❖ On a scale of 1 (hate) to 5 (love), how do you feel about C 
as a programming language?
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Administrivia

❖ Next Check-in:

▪ End of Semester Survey

▪ Due before next lecture (Tuesday)

❖ Next Lecture: Special topic from Joel about intro to 
threads

❖ All Homework Assignments are out right now

3
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Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ const

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

4
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Poll: how are you?

❖ Why do you think we chose C as the programming 
language for this course?

5

pollev.com/tqm
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C/C++?

❖ Common way of listing the languages: C/C++

❖ Common understanding of the language

▪ C++ is C but more

▪ C++ is a super set of C

❖ This understanding
is a pet-peeve of mine

7

C++

C
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C vs C++ (Timeline)

❖ What People Think

8

C C++
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C vs C++ (Timeline)

❖ More Detail (but a lot left out)

9

C
1972

K&R C
1978

ANSI C
1989

C99
1999

C w/
Classes
1982

C++
1985

C++98
1998

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.
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C vs C++ (Timeline)

❖ More Detail (but a lot left out)

10

ANSI C
1989

C99
1999

C++98
1998

C++11
2011

C11
2011

THE LANGUAGES “FORK” around 1999
Not all C99 features are legal C++, but most of them are.

C++14
2014

C++17
2017

C++20
2020

C++23
2023

C23
2023

C has adopted changes from C++
example: auto and nullptr in C23
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C vs C++ Examples

❖ old_c.c

▪ C has evolved since it was introduced in 1972

❖ c23.c

▪ C still gets updates adding new features

▪ Admittedly, the updates are small relative to other language 
updates

❖ cpp23.cpp and stdin_echo.cpp

▪ Modern C++ is very different from C (Though most C is still legal!)

❖ cpp23_hello.cpp

▪ The fundamentals of the language are changing as well 11
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Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

12
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Hello World in C++

❖ Looks simple enough…

▪ Compilation command if you want to compile this yourself:  

▪ Let’s walk through the program step-by-step to highlight some 
differences

13

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

using namespace std;

int main() {

  cout << "Hello, World!" << endl;

  return EXIT_SUCCESS;

}

g++-12 -Wall -g -std=c++23 -o helloworld helloworld.cpp

helloworld.cpp
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Poll: how are you?

❖ What does this code print?

14

pollev.com/tqm

#include <iostream>

#include <cstdlib>

using namespace std;

void modify_int(int x) {

  x = 5;

}

int main() {

  int num = 3;

  modify_int(num);

  cout << num << endl; 

  return EXIT_SUCCESS;

}
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Let’s do a slightly more complex program

15
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Greeting C++

❖ string is part of the C++ standard library

▪ We still have to #include it

• No more char* !

▪ When we initialize any variable in C++, we use the {}

16

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  // ...

}

greeting.cpp
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Greeting C++

17

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  cout << "Who are you?" << endl;

  // ...

}

greeting.cpp
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Greeting C++

❖ Declares an empty string ("")

▪ You should must always initialize a variable with {} even if empty

18

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  cout << "Who are you?" << endl;

  string input {};

  // ...

}

greeting.cpp
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Greeting C++

❖ Reads from stdin (terminal input) into “input”

▪ This works for reading in numbers too

19

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  cout << "Who are you?" << endl;

  string input {};

  cin >> input;

  // ...

}

greeting.cpp
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Greeting C++

❖ Reads from stdin (terminal input) into “input”

▪ This works for reading in numbers too

20

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  cout << "Who are you?" << endl;

  string input {};

  cin >> input;

  // ...

}

greeting.cpp
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Greeting C++

❖ Can use == to compare strings

21

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  cout << "Who are you?" << endl;

  string input {};

  cin >> input;

  if (input == expected) {

  } 

}

greeting.cpp
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Greeting C++

❖ Can chain << repeatedly

▪ Would also work for printing a lot of types

• (including integer and floating point types) 22

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  cout << "Who are you?" << endl;

  string input {};

  cin >> input;

  if (input == expected) {

    cout << "Hello " << input << "!" << endl;

  } 

}

greeting.cpp
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Greeting C++

❖ Print to 
cerr when 
there is an 
error.

❖ Also known 
as stderr

❖ This case is 
debatably 
an error.

23

#include <iostream>   // for cout, endl

#include <cstdlib>    // for EXIT_SUCCESS

#include <string>     // for string

using namespace std;

int main() {

  string expected {"Travis"};

  cout << "Who are you?" << endl;

  string input {};

  cin >> input;

  

  if (input == expected) {

    cout << "Hello " << input << "!" << endl;

  } else {

    cerr << "Who the hell are you????" << endl;

  }

  return EXIT_SUCCESS;

}

greeting.cpp
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Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

24
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STL Containers ☺

❖ A container is an object that stores (in memory) a 
collection of other objects (elements)

▪ Implemented as class templates, so hugely flexible

▪ More info in C++ Primer §9.2, 11.2

❖ Several different classes of container

▪ Sequence containers (vector, deque, list, ...)

▪ Associative containers (set, map, multiset, multimap, bitset, ...)

▪ Differ in algorithmic cost and supported operations

25
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vector

❖ A generic, dynamically resizable array

▪ https://cplusplus.com/reference/vector/vector/

▪ Elements are store in contiguous memory locations

• Can index into it like an array

• Random access is O(1) time

▪ Adding/removing from the end is cheap (amortized constant 
time)

▪ Inserting/deleting from the middle or start is expensive (linear 
time)

❖ Most common member function: push_back()

▪ Adds an element to the end of the vector

26

C++ equivalent of ArrayList

https://cplusplus.com/reference/vector/vector/
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Vector example

27

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char* argv[]) {

  vector<int> vec {6, 5, 4};

  vec.push_back(3);

  vec.push_back(2);

  vec.push_back(1);

  cout << "vec.at(0)" << endl << vec.at(0) << endl;

  cout << "vec.at(1)" << endl << vec.at(1) << endl;

  

  // iterates through all elements

  for (size_t i = 0U; i < vec.size(); ++i) {

     cout << vec.at(i) << endl;

  } 

  return EXIT_SUCCESS;

}

Most containers are in a module of 

the same name

Constructs a vector with 

three initial elements

Add three integers to the vector

Print all the values in the array
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range for loop

❖ Syntactic sugar similar to Java’s foreach

▪ declaration defines the loop variable

▪ expression is an object representing a sequence

• Strings, and most STL containers work with this

28

for (declaration : expression) {

  statements

} 

string str{"hello"};

// prints out each character

for (char c : str) {

  cout << c << endl;

}
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range for loop vector example

❖ If you need to iterate over every element in a sequence, 
you should use a range for loop.

▪ Why? It is harder to mess it up that way

29

int main(int argc, char* argv[]) {

  vector<int> vec {6, 5, 4};

  vec.push_back(3);

  vec.push_back(2);

  vec.push_back(1);

  

  // iterates through all elements

  for (int element : vec) {

     cout << element << endl;

  } 

  return EXIT_SUCCESS;

}
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Poll: how are you?

❖ What is the final value of v by the end of the main() 
function?

30

pollev.com/tqm

#include <vector>

#include <iostream>

using namespace std;

void populate_vec(vector<int> v) {

  v.push_back(5950);

}

int main() {

  vector<int> v {};

  populate_vec(v);

  cout << v.size() << endl;

  for (size_t i = 0U; i < v.size(); ++i) {

     cout << v.at(i) << endl;

  } 

  return EXIT_SUCCESS;

}
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Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ const

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

35
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

36

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x; 

  z += 1;  

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x 5

y 10

Note: Arrow points 
to next instruction.

When we use '&' in a type 

declaration, it is a reference.

&var still is “address of var”
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

37

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 5

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

38

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 6

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

39

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 7

y 10

Note: Arrow points 
to next instruction.

// Normal assignment
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

40

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  // sets z (and x) to the value of y

  z += 1;  

  return EXIT_SUCCESS;

}

x, z 10

y 10

Note: Arrow points 
to next instruction.
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References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

41

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int& z = x;  // binds the name "z" to x

  z += 1;  // sets z (and x) to 6

  x += 1;  // sets x (and z) to 7

  z  = y;  // sets z (and x) to the value of y

  z += 1;  // sets z (and x) to 11

  return EXIT_SUCCESS;

}

x, z 11

y 10

Note: Arrow points 
to next instruction.
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

42

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a 5

(main) b 10

Note: Arrow points 
to next instruction.

Parameters are attached

To variables provided by caller
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

43

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points 
to next instruction.

(swap) tmp
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

44

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

45

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

10

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

46

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a
(swap) x

10

(main) b
(swap) y

5

Note: Arrow points 
to next instruction.

(swap) tmp 5
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Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

47

void swap(int& x, int& y) {

  int tmp = x;

  x = y;

  y = tmp;

}

int main(int argc, char** argv) {

  int a = 5, b = 10;

  swap(a, b);

  cout << "a: " << a << "; b: " << b << endl;

  return EXIT_SUCCESS;

}

(main) a 10

(main) b 5

Note: Arrow points 
to next instruction.
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Polling Question

❖ What will happen when we run this?

A. Output "(3,3,3)"

B. Output "(3,3,2)"

C. Compiler error 
    about arguments
    to foo (in main)

D. Compiler error
    about body of foo

E.   None of the
      above
F. We’re lost…

48

void foo(int& x, int& y, int z) {

  z = y; 

  x += 2;

  y = x;

}

int main(int argc, char* argv[]) {

  int a = 1;

  int b = 2;

  int& c = a;

  foo(a, b, c);

  cout << "(" << a << ", " << b

       << ", " << c << ")" << endl;

  return EXIT_SUCCESS;

}

pollev.com/tqm
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Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

56
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Functions that sometimes fail

❖ It is pretty common to write functions that sometimes 
fail. Sometimes they don’t return what is expected

❖ Consider we were building up a Queue data structure that 
held strings, that could

▪ Add elements to the end of a sequence

• void 

▪ Remove elements from the beginning of a sequence

▪ How do we design this function to handle the case where there 
are no strings in the queue (e.g. it errors?)

57

void add(string data);

???? remove(????);
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Previous ways to handle failing functions

❖ Return an "invalid" value:  e.g. if looking for an index, 
return -1 if it can’t be found.

▪ What if there is no nice "invalid" state?

❖ C-style: return an error code or success/failure.
        Real output returned through output param

58

// what is an invalid string?

string remove();

bool remove(string* output);
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Aside: Java “Object” variables

❖ Does this java compile?

❖ What about this C++?

59

public static String foo() {

  return null;

}

string foo() {

  return nullptr;

}
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Aside: Java “Object” variables

❖ In high level languages (like java), object variables don’t 
actually contain an object, they contain a reference to an 
object.

▪ References in these languages can be null

60

String s = new String("Java");

String other = null;

main’s stack frame

s

other null "Java"

heap



CIS 2400, Fall 2024L23:  C++ & SafetyUniversity of Pennsylvania

Aside: Java “Object” variables

❖ In C++, a string variable is itself a string object

61

string s{"C++"};

// does not do what you think it does

string other = nullptr; 

main’s stack frame

s "C++" More on this idea when I 
talk about pointers later
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Previous ways to handle failing functions

❖ Return a pointer to a heap allocated object, could return 
nullptr on error

▪ Uses the heap when it is otherwise unnecessary 

▪ Need to remember to delete (e.g. free()) the string

❖ Java style: throw an exception in the case of an error
  return the value as normal

▪ Exceptions not  best for performance

▪ Exception catching not always the easiest to handle

62

string* remove();

string remove() {

  if (this->size() <= 0U) {

    throw std::out_of_range{"Error!"};

  }
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std::optional

❖ optional<T> is a struct that can either:

▪ Have some value T
(optional<string> {"Hello!"})

▪ Have nothing 
(nullopt)

❖ optional<T> effectively extends the type T to have a 
"null" or "invalid" state

63

optional<string> foo() {

  if (/* some error */) {

    return nullopt;

  }

  return "It worked!";

}
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Using an optional

❖ If we call a function that returns an optional, we need to 
check to see if it has a value or not

64

optional<string> foo() {

  if (/* some error */) {

    return nullopt;

  }

  return "It worked!";

}

int main() {

  optional<string> opt = foo();

  if (!opt.has_value()) {

    return EXIT_FAILURE;

  }

  string s = opt.value();

}
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Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

65
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❖ What do you think it means for something to be a 
“Systems Programming Language”?

66

pollev.com/tqm



CIS 2400, Fall 2024L23:  C++ & SafetyUniversity of Pennsylvania

Systems Programming Definition

❖ Unfortunately, there is not a consistent definition:

▪ “Instead of producing software that services users, you write 
software that provides services to computer hardware.”

• Or instead of for hardware: “software that is in service of other 
software”.

▪ “Hardware / Machine / System specific. Would require rewriting 
to bring to other systems”

▪ “Has properties of hardware in mind. Takes advantages of various 
characteristics / interfaces of the system it runs on”

▪ “Knows and makes use of the tools provided by the operating 
systems”

▪ “Working in resource or time constrained systems”

▪ “Low Level”

67
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Systems Programming Definition

❖ C++ is a systems programming language. As we can see, 
“Systems Programming” does not have to mean:

▪ Strings and objects don’t exist

▪ Pointers everywhere

▪ Needing to explicitly allocate and deallocate memory for 
everything

• Good to be aware of which memory allocations are being made, but 
not needed all the time.

▪ Etc.

68
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Lecture Outline

❖ C & C++

❖ Intro to C++

▪ std::string & iostreams

▪ std::vector

▪ References

▪ std::optional

❖ "Systems Programming"

❖ Safety

❖ What’s Next?

69
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What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ NSA: 2 years ago (Nov 10th, 2022)

70

Rust is not mentioned in this snippet, but mentioned somewhere else in the announcement
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What else is going on?

❖ C++ Seems so cool!!!! What else is going on? ☺

❖ White House: 10 months ago (Feb 26th, 2024)

71
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Memory Safety CVE

❖ CVE = Common Vulnerabilities and Exposures

72This is from Microsoft research showing how most vulnerabilities come from memory issues
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Memory Safety 

❖ Memory Safety is dominating discussion on Systems 
programming languages (C, C++, Rust, Zig, Nim, D, …)

❖ What is memory safety?

❖ Broadly two types:

▪ Temporal Safety: making sure you don’t access “objects” that are 
destroyed, or in invalid states

▪ Spatial Safety: making sure you do not access memory you either 
shouldn’t access or accessing them in the wrong ways

73
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Temporal Safety C Example

❖ Here is an example in C where is the issue?

74

int main(int argc, char** argv) {

  int* ptr = malloc(sizeof(int));

  assert(ptr != NULL);

  *ptr = 5;

  // do stuff with ptr

  free(ptr);

  printf("%d\n", *ptr);

}
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Temporal Safety

❖ Here is an example in C++ where is the issue?

75

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

  vector<int> v {3, 4, 5};

  int& first = v.front();

  cout << first << endl;

  

  v.push_back(6);

  cout << v.size() << endl;

  cout << first << endl;

}
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Temporal Safety

❖ Here is an example in C++ where is the issue?

76

#include <iostream>

#include <vector>

using namespace std;

void func(vector<int>& v1, vector<int>& v2) {

  v1.push_back(v2.front());

}

int main() {

  vector<int> x{3, 4, 5};

  func(x, x);

}
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Spatial Safety

❖ C (and C++) enforce types on variables, they are statically 
typed 

❖ C and C++ can easily get around the type system though:

78

int main() {

  int x = 3;

  float f1 = x;  // converts bits to floating point rep

  float f2 = *(float*)&x; // copies bits

 

  printf("%f\n", f1); // these two print

  printf("%f\n", f2); // different things

}
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Spatial Safety

❖ C (and C++) enforce types on variables, they are statically 
typed 

❖ C and C++ can easily get around the type system though:

79

int main() {

  string s = "Howdy :)";

  vector<int> v = *retinterpret_cast<vector<int>*>(&s);

  v.push_back(3);

  // this code probably crashes before getting here

}
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Aside: unions

❖ A union is a type that can have more than one possible 
representations in the same memory position

80

union {

  float f;

  int i;

};

f = 3.14;  // assigns a float value to the union

printf("%d\n", i);  // try to interpret the same memory as an int
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Spatial Safety

❖ A union is a type that can have more than one possible 
representations in the same memory position

82

// common design pattern, return a struct that either holds

// an error or the expected value, with a bool to indicate

struct parer_result {

  bool is_valid;

  union {

    char* error message;

    struct parsed_command* cmd;

  };

};

struct parser_result parse_cmd(const char* input);

int main() {

  struct parser_result = parse_cmd("…");

  struct parsed_command = *(parser_result.cmd)

}



CIS 2400, Fall 2024L23:  C++ & SafetyUniversity of Pennsylvania

Spatial Safety

❖ Sometimes violating spatial safety is "needed"
▪ To support “Generics” in C, we often cast to/from void*

▪ Can be used for some cool stuff like this fast inverse square root 
algorithm (don’t do this, it is not fast anymore):

84
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Spatial Safety 

❖ Spatial safety includes index out of bounds.

❖ What is wrong here?

❖ Here?

85

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0;  // memory smash!
No IndexOutOfBounds

Hope for segfault

write(STDOUT_FILENO, "Hello!\n", 1024);

char buf[7];

strcpy(buf, "Hello!\n");
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Has C++ Been Fixing These?

❖ C++ has been giving replacements for these features that 
are safer.

▪ Instead of union, C++ has optional, variant, any and others

▪ Instead of C arrays, there is the vector and array type

❖ Is this C++ safe?

❖ C++ Keeps adding new features that are better and safer 
but adding in unchecked-unsafe ways to use them. 
Usually, the argument is for performance

86

vector<int> v {2, 3, 5, 6, 11, 13};

v[1000] = 7;      // is this safe?

v.at(1000) = 0;   // above: no, this: yes
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C++ Backwards compatibly

❖ Even with Modern C++ adding new features to get better 
and safer, many people stick to bad habits that are kept in 
C++ for backwards compatibility

87
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Counter Point: How serious is this safety?

❖ A counterpoint to the safety stuff is that:

▪ There is already a lot of tools to help detect these issues 
(Valgrind, Address Sanitizer, UB Sanitizer, etc.)

▪ These issues are common, but they are not the biggest issues of 
Security

❖ Notable Recent Security Issues:

▪ Heartbleed

▪ Spectre & Meltdown

▪ Log4j

▪ XZ utils backdoor

▪ Social Engineering in general

88
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Other Point: Productivity

❖ These issues also affect how productive C++ developers 
are. These are added spots for bugs and can make coding 
more difficult

❖ Some initial studies report improved productivity from 
moving from C++ to Rust

❖ Other languages also have more modern tooling support

▪ Compilation

▪ Package Management

▪ Etc.

89
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Lecture Outline

❖ What’s Next?

90
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C++ Successor Languages

❖ Because of the issue with safety, 2022 has been called 
“the year of the C++ successor Languages”

❖ Just in 2022, three successor languages were announced:

▪ Val (now called Hylo)

▪ Carbon

▪ cppfront  (sometimes called cpp2)

❖ There have been many languages before:

▪ D

▪ Go

▪ Rust

▪ Others: Nim, Zig, Swift, etc. 91
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C and C++ are used everywhere

❖ Many things are written largely/primarily in C++ or C

▪ The Adobe suite (Photoshop, etc)

▪ The Microsoft office suite (word, PowerPoint, etc.)

▪  The libre office suite (FOSS word, PowerPoint, etc)

▪ Chromium (Core of most web browsers, Edge, Opera, Chrome, 
etc)

▪ Firefox 

▪ Most Database implementations

▪ Tensorflow & Pytorch

▪ gcc, clang & llvm (which is the backbone for many compilers)

▪ Game Engines (Unreal, Unity, etc.)

92

Most of this information is from Jason Turner’s “C++ is 40… Is C++ DYING?” video
https://www.youtube.com/watch?v=hxjSpasg3gk
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C and C++ are used everywhere

❖ Regularly ranks in top used ~5-10 programming languages

❖ Many people still use C++

▪ Estimates from JetBrains 

▪ ~1,157,000 professional developers use C++ as their primary 
language

▪ ~2,492,000 professional developers regularly use C++

93
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Programming Language Adoption

94

For better or for worse, C++ already exists and has a bunch of work behind it.
Moving to another thing is going to take time and money, but is not impossible 

Screenshot from Herb Sutter’s Plenary in cppcon 2023: https://www.youtube.com/watch?v=8U3hl8XMm8c
It is an interesting talk, but his cppcon 2022 or c++now 2023 talks may be better starting points for those interested

https://www.youtube.com/watch?v=8U3hl8XMm8c
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Migration

❖ Some organizations are (at least in part) trying to move 
from C / C++

❖ The Linux kernel has incorporated Rust into it

▪ It never allowed C++ into the kernel

❖ Microsoft and Mozilla Firefox are putting in a lot of effort 
to start training some employees to program in Rust.

❖ Some places are investigating the language “Zig”

95
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Migration Example: Python

❖ Python made breaking changes just moving from version 
2.7 to 3.0

❖ Python 2.7
was extended
in support for
a long time.
~10 years

❖ It took a
REALLY long time for many people to give up Python 2.7 
and move to Python 3.

❖ How long will it take to move away from C++?
96
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Evolution

❖ C++ is evolving to try and accommodate for some of these 
issues

▪ Epochs & safety profiles

❖ Some passionate C++ developers are trying to make a new 
language/syntax.

▪ Cppfront (cpp2) by Herb Sutter: a new syntax on C++ that fixes a 
lot of broken defaults and makes writing C++ simpler. Still 
compiles with and can directly invokes existing C++ code

▪ Circle: a C++ compiler that supports many new features including 
ones related to safety, but these features are not std C++

▪ Carbon by Google: a new language with strong C++ 
interoperability. Still very early on and not runnable

97
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What’s next?

❖ The situation is developing, we will see how things evolve 
over time ☺ 

❖ There is a lot of inertia towards moving away from C++ 
and a lot of things look promising

▪ I think Rust and Zig both look very very cool and I wish I could 
teach you one of those languages and we could just use them.

▪ Cppfront (or carbon or circle) looks the most promising. They have 
the advantage of easier integration into existing C++ ecosystems 
and making C++ safer and easier to use. It is compatible with most 
existing C++ tools and code-bases.

98
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