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Poll: how are you?

❖ I hope you were able to enjoy your breaks!

❖ Anything exciting happen? Any really good food made?

2

pollev.com/cis2400
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What is a Program?

❖ A "program" is a set of instructions, essentially a static file 
containing code.
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void answer_emails() {
     // I’m Jeff Besos
     // My Inbox has 1,000,000 emails

for (auto& email : inbox) { 
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

It’s just text…
nothing special about it. 
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What is a Program in execution?

❖ A "program" in execution is called a process. 

4

void answer_emails() {
     // I’m Jeff Besos
     // My Inbox has 1,000,000 emails

for (auto& email : inbox) { 
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

The compiled Instructions 

executed on the processor

What does the process consist of?

memory, instructions, registers, and other 
state involved in program execution.
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What is necessary to run a process?

❖ You need a CPU with at least one core! 

❖ What’s a core?

5

ITS THIS! (ESSENTIALLY)

Fetch/Decode Instructions Register State/Memory State

Execution Unit (ALU) 
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What is necessary to run a process?

❖ You need a CPU with a single core! 

❖ Single Core

▪ Fetch/Decode, Register/Memory, Execution Unit (ALU)

▪ Fundamental unit of systems hardware

❖ Does anyone know the # of cores in an Intel i9 CPU?

▪ (the ceo just quit yesterday btw. Company isn’t doing well I hear)

▪ We’ll leave that to the Wharton people 

6*memory in these slides does not refer to RAM but rather the Cache

Truth: most things aren’t singly cored anymore
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What is necessary to run a process?

❖ You need a CPU with a single core! 

❖ Single Core

▪ Fetch/Decode, Register/Memory, Execution Unit (ALU)

▪ Fundamental unit of systems hardware

❖ Does anyone know the # of cores in an Intel i9 CPU?

▪ Trick question; depends on the model. 

▪ Intel® Core  i9-7900X X-series Processor

• 10 Cores!

▪ Highest model has 18 cores!
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Truth: most things aren’t singly cored anymore
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A Single Core

8

Fetch and decode instructions.  

Register Set and Memory State

Execution Unit (ALU)
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Let’s focus on just one core for now

❖ With one core, we can run one process! 

▪ let’s open up chrome

❖ Question: what if you want to open 2 more applications?
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running chrome
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Let’s focus on just one core for now

❖ We want to run 3 things on a single core processor.

❖ Things can not run via parallelism (simultaneously). 

▪ Why? We only have ONE CORE. Only one ALU to go around. 
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running chrome running spotify

THIS EXAMPLE IS NOT POSSIBLE
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Let’s focus on just one core for now

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ we can switch between different processes

11

running chrome
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Let’s focus on just one core for now
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running spotify

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ we can switch between different processes
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Let’s focus on just one core for now
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running discord

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ we can switch between different processes
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❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ Make it seem like things are running simultaneously

Let’s focus on just one core for now

14

running spotify
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❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ Make it seem like things are running simultaneously

Let’s focus on just one core for now

15

running chrome
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What does concurrency look like?
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chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0, 
%lo(.L.str)

Instructions
Chrome

pc
spotify_gen_wav:

li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0, 
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

running chrome
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What does concurrency look like?
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Instructions
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pc

*pc designates the nxt inst. to exec here.

pc

running chrome
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What does concurrency look like?
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What does concurrency look like?
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What does concurrency look like?
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What does concurrency look like?
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What does concurrency look like?
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What does concurrency look like?
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What does concurrency look like?
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What does concurrency look like?
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What does concurrency look like?
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running spotify
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What does concurrency look like?
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*pc designates the nxt inst. to exec here.

pc

Only one instruction executes at a time on a single-core processor. 

To allow multiple processes to run, the operating system takes turns giving each 
process access to the CORE, one at a time.

Note: Do not ask how this is done today…
take OS with us next semester…. ☺
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void answer_emails() {
     // I’m Jeff Besos
     // My Inbox has 1,000,000 emails

for (auto& email : inbox) { 
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

Let’s bring back this code

29

Looping:
    keeping track of email
    loading email into mem    

Send:
   creates email
   formats data for response
   connection to email server
   send over network!

Most of these operations are relatively quick! 

Except for one…

Connecting to an email server and sending an email can 
easily take 50+ ms.
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void answer_emails() {
     // I’m Jeff Besos
     // My Inbox has 1,000,000 emails

for (auto& email : inbox) { 
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

Time Analysis

30

Total Elapsed Time

10 ms 150 ms

Cal Current Email
Loading Email
invoking send()

This means calling the function, not doing the sending over the network

Time it takes to send the email over the network

Looping:
    keeping track of email
    loading email into mem    

Send:
   creates email
   formats data for response

connection to email server
send over network!
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Poll: how are you?

31

pollev.com/cis2400

What’s so wrong with this? Discuss!

void answer_emails() {
// My Inbox has 1,000,000 emails

for (auto& email : inbox) { 
 email.send("Sorry, I'm out of town...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
} auto_responder.c

10 ms

150 ms

Cal Current Email
Loading Email
invoking send()

Time it takes to send the email 
over the network

Put your short responses into poll everywhere ☺
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Poll: how are you?
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pollev.com/cis2400

What do we spend most of our time doing?

void answer_emails() {
// My Inbox has 1,000,000 emails

for (auto& email : inbox) { 
 email.send("Sorry, I'm out of town...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
} auto_responder.c

10 ms

150 ms

Cal Current Email
Loading Email
invoking send()

Time it takes to send the email 
over the network

❖We spend more time in the I/O operations
▪ Establishing Connection with Email Server
▪ Sending Email Over Network
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Let’s Visualize the Bottleneck

33
Time Elapsed

1 Email Sent

Using CPU

Waiting for I/O

10 ms

150 ms

We only use the CPU about 5-10% of the time… 

After 10ms of usage, it just stands by…
 
If only there a way to use the CPU more….

*yes it’s not to scale
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CPU Utilization

❖ When a process waits for I/O, the CPU remains 
idle, wasting valuable processing time. 

❖ Our goal is to maximize CPU utilization and 
ensure it stays actively engaged in useful work.

❖ What if we could send the next email while 
waiting for the network I/O?

34
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Before Threads, There Were Processes

❖ A "program" in execution is called a process. 

35

Stack

Heap

.data

.text

Memory Layout (State)

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

main:
    // 
    //calls send

pc

Instructions Executed
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Sharing the CPU: It’s like a microwave

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

36

Queue to use Microwave
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Sharing the CPU: It’s like a microwave

37

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Queue to use Microwave

Waiting For Microwave:
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Sharing the CPU: It’s like a microwave
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Queue to use Microwave

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Waiting For Microwave: Done:
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Queue to use Microwave

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Waiting For Microwave: Done:



CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the CPU: It’s like a microwave

40

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Done:

Did you notice how the microwave 
was always being used?

We achieved 99% Microwave Utilization
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❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Queue to use Microwave

Sharing the Microwave Without Threads
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Queue to use Microwave

Waiting For Microwave:

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)
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Sharing the Microwave Without Threads
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Queue to use Microwave

Waiting For Microwave:

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Wait!!!! You can’t use it yet -- it has to cool down!
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Queue to use Microwave

Waiting For Microwave:

❖ When everyone wants to make cup of ramen at 2AM in 
your dorm, you probably share a microwave 
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

So even if the microwave isn’t in use
the person takes ownership of the microwave and hogs it…

Wait!!!! You can’t use it yet -- it has to cool down!
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Queue to use Microwave

❖ As you can see, this is incredibly inefficient…

Waiting For Microwave: Done: you can use it 
now Travis…
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The Core

One Process: ./cook_ramen_together
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The Core

One Process: ./cook_ramen_together

cook_ramen_microwave();

cook_ramen_microwave();

cook_ramen_microwave();
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The Core

One Process: ./cook_ramen_together

for(int i = 0; i < 3; i++){
    cook_ramen_microwave();
}
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The Core

One Process: ./cook_ramen_together

for(int i = 0; i < 3; i++){
    cook_ramen_microwave();
}

We all want to cook the ramen – 
We just each need to run our own cook_ramen_mico() function. 
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cook_ramen:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
call cook
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc
cook_ramen:

addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
call cook
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc cook_ramen:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
call cook
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Process vs Threads?

50

One Process: ./cook_ramen_together

Stack

Heap

.data

.text

Three threads
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Multi-Threaded Process
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

Wait, two program counters in the same process? Yup! (Don’t worry about how this is possible)

Wait, two copies of the same instructions? No! (They share this region…)

*important to know that these threads are running in the same process
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Multi-Threaded Program
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread Two

pc

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 2

pc

It’s just the same instructions in the text segment!
They share this region of memory…

Stack

Heap

.data

.text

Memory Layout (State)
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 2

pc

Multi-Threaded Program

53

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread Two

pc

These two threads share the entire memory space!

The stack, the heap, data (global vars), and the text! 

Stack

Heap

.data

.text

Memory Layout (State)

These two threads also share the processor!
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 2

pc

One Process with Two Threads

54

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 1

pc

Stack

Heap

.data

.text

Memory Layout (State)
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Concurrency: Processor Sharing
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…
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57

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O. 
Let’s switch to the other thread…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O. 
Let’s switch to the other thread…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O. 
Let’s switch to the other thread…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O. 
Let’s switch to the other thread…
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU now.. This thread is waiting for 
I/O. 

Let’s switch to thread 1 
and see if the I/O is done
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send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for 
I/O. 

Now this thread continues! 
It does the set up to send 

another email!

*you might notice this looks familiar
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Starts to send email
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Starts to send email

But, we start waiting for I/O so we switch over to thread 2.

But, we start waiting for I/O so we switch over to thread 1.
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

We do the set 
up to second 

second email in 
thread 2

Thread 1 Starts second email

We wait for I/O; time to switch over to 
thread 2
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Now With Two Threads
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 1 Starts Third email….
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Poll: how are you?
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pollev.com/cis2400

Is the CPU always utilized? Discuss!

Using CPU

Waiting for I/O

Time Elapsed

Thread 1

Thread 2

……….

……….
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Poll: how are you?
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pollev.com/cis2400

Is the CPU always utilized? No! :/

Using CPU

Waiting for I/O

Time Elapsed

Thread 1

Thread 2

……….

……….

Here, there is only waiting for I/O until there’s more work to do. 
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How can we do better? 3 Threads!
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Starts to send email

Thread 3

Here, the CPU or core is consistently active, with no idle time spent 
waiting for additional tasks to process.
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How can we do better? 3 Threads!
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

Here, the CPU or core is consistently active, with no idle time spent 
waiting for additional tasks to process.

As soon as one thread starts waiting for I/O there’s always another 
waiting for the CPU.
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How is this better?
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In this Interval, 

we send three emails! 

Thread 1

Thread 2

In the same Interval, 

we send only two. emails! 
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How is this better?
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In this Interval, 

we send three emails! 

Thread 1

Thread 2

In the same Interval, 

we send only two. emails! 
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How is this better?
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In this Interval, 

we send three emails! 

Thread 1

Thread 2

In the same Interval, 

we send only two. emails! Thread 1

Time Elapsed

In the same Interval, 

we send only one! 
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How can we do better? 3 Threads!
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Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In general, using more threads allows multiple tasks to be handled 
simultaneously, which means more work gets done in the same 

amount of time.

*sometimes, adding more threads makes things slower actually. 
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Processes vs. Threads: What's the Difference?
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running chrome

Process 1 Process 2 Process 3

❖Each process has its own memory space—makes sense, right? 

❖Why should Spotify have access to Chrome's memory?
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Processes vs. Threads: What's the Difference?
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running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

❖We want to run three tabs.

❖It makes sense to run each tab 
separately!
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Processes vs. Threads: What's the Difference?
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running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

Bad: We are allocating too 
many resources for just three 

tabs. 
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Processes vs. Threads: What's the Difference?
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running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp, 
run_tab:

//inst
//inst
//inst
//inst

Why not something like this?

All tabs share the same memory 
since they’re running the same 
application—this makes sense.

However, each tab operates 
independently, maintaining its own 

execution context.

This is One Process with Three Threads

Thread 1

Thread 2

Thread 3
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Processes vs. Threads: What's the Difference?
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running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp, 
run_tab:

//inst
//inst
//inst
//inst

Process 3

Stack

Heap

.data
.text

run_spotify:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_discord:
//inst
//inst
//inst
//inst
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Processes vs. Threads: What's the Difference?
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running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp, 
run_tab:

//inst
//inst
//inst
//inst

Process 3

Stack

Heap

.data
.text

run_spotify:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_discord:
//inst
//inst
//inst
//inst
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Processes vs. Threads: What's the Difference?
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running chrome

Process 1 Process 2 Process 3

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp, 

Stack

Heap

.data
.text

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

run_spotify:
//inst
//inst
//inst
//inst

run_discord:
//inst
//inst
//inst
//inst
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Processes vs. Threads: What's the Difference?
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running discord

Process 1 Process 2 Process 3

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp, 

Stack

Heap

.data
.text

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

run_spotify:
//inst
//inst
//inst
//inst

run_discord:
//inst
//inst
//inst
//inst
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Processes vs. Threads: What's the Difference?
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Process 1 Process 2 Process 3

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp, 

Stack

Heap

.data
.text

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

run_spotify:
//inst
//inst
//inst
//inst

run_discord:
//inst
//inst
//inst
//inst

running spotify
Now we can switch 

what runs on the CPU 
within the same 

process.
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Example: Visualizing the Mandlebrot Set

87

Let’s compare how threads help us here: 

Non-Threaded vs Fully Threaded Implementations

We need to compute for 
each pixel, if it belongs in 

the set in addition.

Compute Intensity

Currently: ~960000 values
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And that’s it! ☺

88
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