
CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Poll: how are you?

❖ I hope you were able to enjoy your breaks!

❖ Anything exciting happen? Any really good food made?

2

pollev.com/cis2400

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What is a Program?

❖ A "program" is a set of instructions, essentially a static file
containing code.

3

void answer_emails() {
 // I’m Jeff Besos
 // My Inbox has 1,000,000 emails

for (auto& email : inbox) {
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

It’s just text…
nothing special about it.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What is a Program in execution?

❖ A "program" in execution is called a process.

4

void answer_emails() {
 // I’m Jeff Besos
 // My Inbox has 1,000,000 emails

for (auto& email : inbox) {
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

The compiled Instructions

executed on the processor

What does the process consist of?

memory, instructions, registers, and other
state involved in program execution.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What is necessary to run a process?

❖ You need a CPU with at least one core!

❖ What’s a core?

5

ITS THIS! (ESSENTIALLY)

Fetch/Decode Instructions Register State/Memory State

Execution Unit (ALU)

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What is necessary to run a process?

❖ You need a CPU with a single core!

❖ Single Core

▪ Fetch/Decode, Register/Memory, Execution Unit (ALU)

▪ Fundamental unit of systems hardware

❖ Does anyone know the # of cores in an Intel i9 CPU?

▪ (the ceo just quit yesterday btw. Company isn’t doing well I hear)

▪ We’ll leave that to the Wharton people

6*memory in these slides does not refer to RAM but rather the Cache

Truth: most things aren’t singly cored anymore

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What is necessary to run a process?

❖ You need a CPU with a single core!

❖ Single Core

▪ Fetch/Decode, Register/Memory, Execution Unit (ALU)

▪ Fundamental unit of systems hardware

❖ Does anyone know the # of cores in an Intel i9 CPU?

▪ Trick question; depends on the model.

▪ Intel® Core i9-7900X X-series Processor

• 10 Cores!

▪ Highest model has 18 cores!

7

Truth: most things aren’t singly cored anymore

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

A Single Core

8

Fetch and decode instructions.

Register Set and Memory State

Execution Unit (ALU)

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Let’s focus on just one core for now

❖ With one core, we can run one process!

▪ let’s open up chrome

❖ Question: what if you want to open 2 more applications?

9

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Let’s focus on just one core for now

❖ We want to run 3 things on a single core processor.

❖ Things can not run via parallelism (simultaneously).

▪ Why? We only have ONE CORE. Only one ALU to go around.

10

running chrome running spotify

THIS EXAMPLE IS NOT POSSIBLE

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Let’s focus on just one core for now

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ we can switch between different processes

11

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Let’s focus on just one core for now

12

running spotify

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ we can switch between different processes

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Let’s focus on just one core for now

13

running discord

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ we can switch between different processes

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ Make it seem like things are running simultaneously

Let’s focus on just one core for now

14

running spotify

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

❖ We want to run 3 things on a single core processor.

❖ Our Solution: Concurrency

▪ Make it seem like things are running simultaneously

Let’s focus on just one core for now

15

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

16

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

pc
spotify_gen_wav:

li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

17

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

18

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

19

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

20

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

21

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

22

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running chrome

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

23

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

*pc designates the nxt inst. to exec here.

pc

pc

running spotify

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

24

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running spotify

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

25

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running spotify

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

26

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running spotify

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

27

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

running spotify

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

What does concurrency look like?

28

chrome_http_response:
sw a0, -12(s0)
li a1, 1
sw a1, -28(s0)
li a1, 2
sw a1, -32(s0)
sh a0, -24(s0)
lui a0, 2
addi a0, a0, -112
sw a0, -36(s0)
call bind
lw a1, -36(s0)
sh a0, -24(s0)
lui a0, %hi(.L.str)
addi a0, a0,
%lo(.L.str)

Instructions
Chrome

spotify_gen_wav:
li a1, 10
mul a0, a0, a1
fcvt.d.w ft0, a0
lui a0, %hi(.LCPI2_0)
fld ft1, %lo(.LCPI2_0)(a0)
fdiv.d fa0, ft0, ft1
call sin
fsd fa0, -24(s0)
lw a1, -12(s0)
fld ft0, -24(s0)
lui a0, %hi(.L.str.7)
addi a0, a0,
%lo(.L.str.7)

Instructions
Spotify

pc

*pc designates the nxt inst. to exec here.

pc

Only one instruction executes at a time on a single-core processor.

To allow multiple processes to run, the operating system takes turns giving each
process access to the CORE, one at a time.

Note: Do not ask how this is done today…
take OS with us next semester…. ☺

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

void answer_emails() {
 // I’m Jeff Besos
 // My Inbox has 1,000,000 emails

for (auto& email : inbox) {
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

Let’s bring back this code

29

Looping:
 keeping track of email
 loading email into mem

Send:
 creates email
 formats data for response
 connection to email server
 send over network!

Most of these operations are relatively quick!

Except for one…

Connecting to an email server and sending an email can
easily take 50+ ms.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

void answer_emails() {
 // I’m Jeff Besos
 // My Inbox has 1,000,000 emails

for (auto& email : inbox) {
 email.send("Sorry, I’m on my yacht...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
}

auto_responder.c

Time Analysis

30

Total Elapsed Time

10 ms 150 ms

Cal Current Email
Loading Email
invoking send()

This means calling the function, not doing the sending over the network

Time it takes to send the email over the network

Looping:
 keeping track of email
 loading email into mem

Send:
 creates email
 formats data for response

connection to email server
send over network!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Poll: how are you?

31

pollev.com/cis2400

What’s so wrong with this? Discuss!

void answer_emails() {
// My Inbox has 1,000,000 emails

for (auto& email : inbox) {
 email.send("Sorry, I'm out of town...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
} auto_responder.c

10 ms

150 ms

Cal Current Email
Loading Email
invoking send()

Time it takes to send the email
over the network

Put your short responses into poll everywhere ☺

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Poll: how are you?

32

pollev.com/cis2400

What do we spend most of our time doing?

void answer_emails() {
// My Inbox has 1,000,000 emails

for (auto& email : inbox) {
 email.send("Sorry, I'm out of town...");
}

}

int main(int argc, char* argv[]) {
 answer_emails();
 return 0;
} auto_responder.c

10 ms

150 ms

Cal Current Email
Loading Email
invoking send()

Time it takes to send the email
over the network

❖We spend more time in the I/O operations
▪ Establishing Connection with Email Server
▪ Sending Email Over Network

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Let’s Visualize the Bottleneck

33
Time Elapsed

1 Email Sent

Using CPU

Waiting for I/O

10 ms

150 ms

We only use the CPU about 5-10% of the time…

After 10ms of usage, it just stands by…

If only there a way to use the CPU more….

*yes it’s not to scale

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

CPU Utilization

❖ When a process waits for I/O, the CPU remains
idle, wasting valuable processing time.

❖ Our goal is to maximize CPU utilization and
ensure it stays actively engaged in useful work.

❖ What if we could send the next email while
waiting for the network I/O?

34

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Before Threads, There Were Processes

❖ A "program" in execution is called a process.

35

Stack

Heap

.data

.text

Memory Layout (State)

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

main:
 //
 //calls send

pc

Instructions Executed

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the CPU: It’s like a microwave

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

36

Queue to use Microwave

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the CPU: It’s like a microwave

37

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Queue to use Microwave

Waiting For Microwave:

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the CPU: It’s like a microwave

38

Queue to use Microwave

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Waiting For Microwave: Done:

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the CPU: It’s like a microwave

39

Queue to use Microwave

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Waiting For Microwave: Done:

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the CPU: It’s like a microwave

40

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Done:

Did you notice how the microwave
was always being used?

We achieved 99% Microwave Utilization

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

41

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Queue to use Microwave

Sharing the Microwave Without Threads

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the Microwave Without Threads

42

Queue to use Microwave

Waiting For Microwave:

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the Microwave Without Threads

43

Queue to use Microwave

Waiting For Microwave:

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

Wait!!!! You can’t use it yet -- it has to cool down!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the Microwave Without Threads

44

Queue to use Microwave

Waiting For Microwave:

❖ When everyone wants to make cup of ramen at 2AM in
your dorm, you probably share a microwave
▪ (unless you all have a microwave in each of your rooms then this is an example of parallelism via multiple CPU Cores, don’t ask…)

So even if the microwave isn’t in use
the person takes ownership of the microwave and hogs it…

Wait!!!! You can’t use it yet -- it has to cool down!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Sharing the Microwave Without Threads

45

Queue to use Microwave

❖ As you can see, this is incredibly inefficient…

Waiting For Microwave: Done: you can use it
now Travis…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Process vs Threads?

46

The Core

One Process: ./cook_ramen_together

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Process vs Threads?

47

The Core

One Process: ./cook_ramen_together

cook_ramen_microwave();

cook_ramen_microwave();

cook_ramen_microwave();

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Process vs Threads?

48

The Core

One Process: ./cook_ramen_together

for(int i = 0; i < 3; i++){
 cook_ramen_microwave();
}

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Process vs Threads?

49

The Core

One Process: ./cook_ramen_together

for(int i = 0; i < 3; i++){
 cook_ramen_microwave();
}

We all want to cook the ramen –
We just each need to run our own cook_ramen_mico() function.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

cook_ramen:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
call cook
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc
cook_ramen:

addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
call cook
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc cook_ramen:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
call cook
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Process vs Threads?

50

One Process: ./cook_ramen_together

Stack

Heap

.data

.text

Three threads

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Multi-Threaded Process

51

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

Wait, two program counters in the same process? Yup! (Don’t worry about how this is possible)

Wait, two copies of the same instructions? No! (They share this region…)

*important to know that these threads are running in the same process

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Multi-Threaded Program

52

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread Two

pc

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 2

pc

It’s just the same instructions in the text segment!
They share this region of memory…

Stack

Heap

.data

.text

Memory Layout (State)

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 2

pc

Multi-Threaded Program

53

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread Two

pc

These two threads share the entire memory space!

The stack, the heap, data (global vars), and the text!

Stack

Heap

.data

.text

Memory Layout (State)

These two threads also share the processor!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 2

pc

One Process with Two Threads

54

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop

Instructions
Thread 1

pc

Stack

Heap

.data

.text

Memory Layout (State)

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

55

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

56

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

57

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

58

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

59

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

60

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O.
Let’s switch to the other thread…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

61

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O.
Let’s switch to the other thread…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

62

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O.
Let’s switch to the other thread…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

63

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for I/O.
Let’s switch to the other thread…

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

64

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for CPU now.. This thread is waiting for
I/O.

Let’s switch to thread 1
and see if the I/O is done

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Concurrency: Processor Sharing

65

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

pc

Instructions

Thread One

send:
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
addi s0, sp, 16
// loop omitted
call send_smtp_data
// exit loop
lw ra, 12(sp)
lw s0, 8(sp)
addi sp, sp, 16
jalr x0, ra, 0

Instructions
Thread Two

pc

This thread is waiting for
I/O.

Now this thread continues!
It does the set up to send

another email!

*you might notice this looks familiar

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Now With Two Threads

66
Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Starts to send email

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Now With Two Threads

67
Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Starts to send email

But, we start waiting for I/O so we switch over to thread 2.

But, we start waiting for I/O so we switch over to thread 1.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Now With Two Threads

68
Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

We do the set
up to second

second email in
thread 2

Thread 1 Starts second email

We wait for I/O; time to switch over to
thread 2

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Now With Two Threads

69
Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 1 Starts Third email….

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Poll: how are you?

70

pollev.com/cis2400

Is the CPU always utilized? Discuss!

Using CPU

Waiting for I/O

Time Elapsed

Thread 1

Thread 2

……….

……….

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Poll: how are you?

71

pollev.com/cis2400

Is the CPU always utilized? No! :/

Using CPU

Waiting for I/O

Time Elapsed

Thread 1

Thread 2

……….

……….

Here, there is only waiting for I/O until there’s more work to do.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

How can we do better? 3 Threads!

72

Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Starts to send email

Thread 3

Here, the CPU or core is consistently active, with no idle time spent
waiting for additional tasks to process.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

How can we do better? 3 Threads!

73

Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

Here, the CPU or core is consistently active, with no idle time spent
waiting for additional tasks to process.

As soon as one thread starts waiting for I/O there’s always another
waiting for the CPU.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

How is this better?

74

Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In this Interval,

we send three emails!

Thread 1

Thread 2

In the same Interval,

we send only two. emails!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

How is this better?

75

Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In this Interval,

we send three emails!

Thread 1

Thread 2

In the same Interval,

we send only two. emails!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

How is this better?

76

Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In this Interval,

we send three emails!

Thread 1

Thread 2

In the same Interval,

we send only two. emails! Thread 1

Time Elapsed

In the same Interval,

we send only one!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

How can we do better? 3 Threads!

77

Time Elapsed

Using CPU

Waiting for I/O

Thread 1

Thread 2

Thread 3

In general, using more threads allows multiple tasks to be handled
simultaneously, which means more work gets done in the same

amount of time.

*sometimes, adding more threads makes things slower actually.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

78

running chrome

Process 1 Process 2 Process 3

❖Each process has its own memory space—makes sense, right?

❖Why should Spotify have access to Chrome's memory?

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

79

running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

❖We want to run three tabs.

❖It makes sense to run each tab
separately!

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

80

running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

Bad: We are allocating too
many resources for just three

tabs.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

81

running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp,
run_tab:

//inst
//inst
//inst
//inst

Why not something like this?

All tabs share the same memory
since they’re running the same
application—this makes sense.

However, each tab operates
independently, maintaining its own

execution context.

This is One Process with Three Threads

Thread 1

Thread 2

Thread 3

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

82

running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp,
run_tab:

//inst
//inst
//inst
//inst

Process 3

Stack

Heap

.data
.text

run_spotify:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_discord:
//inst
//inst
//inst
//inst

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

83

running chrome

Process 1

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp,
run_tab:

//inst
//inst
//inst
//inst

Process 3

Stack

Heap

.data
.text

run_spotify:
//inst
//inst
//inst
//inst

Process 2

Stack

Heap

.data
.text

run_discord:
//inst
//inst
//inst
//inst

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

84

running chrome

Process 1 Process 2 Process 3

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp,

Stack

Heap

.data
.text

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

run_spotify:
//inst
//inst
//inst
//inst

run_discord:
//inst
//inst
//inst
//inst

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

85

running discord

Process 1 Process 2 Process 3

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp,

Stack

Heap

.data
.text

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

run_spotify:
//inst
//inst
//inst
//inst

run_discord:
//inst
//inst
//inst
//inst

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Processes vs. Threads: What's the Difference?

86

Process 1 Process 2 Process 3

Stack

Heap

.data
.text

run_tab:
0
run_tab:

addi sp,

Stack

Heap

.data
.text

Stack

Heap

.data
.text

run_tab:
//inst
//inst
//inst
//inst

run_spotify:
//inst
//inst
//inst
//inst

run_discord:
//inst
//inst
//inst
//inst

running spotify
Now we can switch

what runs on the CPU
within the same

process.

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

Example: Visualizing the Mandlebrot Set

87

Let’s compare how threads help us here:

Non-Threaded vs Fully Threaded Implementations

We need to compute for
each pixel, if it belongs in

the set in addition.

Compute Intensity

Currently: ~960000 values

CIS 2400, Fall 2024L24 : ConcurrencyUniversity of Pennsylvania

And that’s it! ☺

88

	Default Section
	Slide 1: Concurrency Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: What is a Program?
	Slide 4: What is a Program in execution?
	Slide 5: What is necessary to run a process?
	Slide 6: What is necessary to run a process?
	Slide 7: What is necessary to run a process?
	Slide 8: A Single Core
	Slide 9: Let’s focus on just one core for now
	Slide 10: Let’s focus on just one core for now
	Slide 11: Let’s focus on just one core for now
	Slide 12: Let’s focus on just one core for now
	Slide 13: Let’s focus on just one core for now
	Slide 14: Let’s focus on just one core for now
	Slide 15: Let’s focus on just one core for now
	Slide 16: What does concurrency look like?
	Slide 17: What does concurrency look like?
	Slide 18: What does concurrency look like?
	Slide 19: What does concurrency look like?
	Slide 20: What does concurrency look like?
	Slide 21: What does concurrency look like?
	Slide 22: What does concurrency look like?
	Slide 23: What does concurrency look like?
	Slide 24: What does concurrency look like?
	Slide 25: What does concurrency look like?
	Slide 26: What does concurrency look like?
	Slide 27: What does concurrency look like?
	Slide 28: What does concurrency look like?
	Slide 29: Let’s bring back this code
	Slide 30: Time Analysis
	Slide 31: Poll: how are you?
	Slide 32: Poll: how are you?
	Slide 33: Let’s Visualize the Bottleneck
	Slide 34: CPU Utilization
	Slide 35: Before Threads, There Were Processes
	Slide 36: Sharing the CPU: It’s like a microwave
	Slide 37: Sharing the CPU: It’s like a microwave
	Slide 38: Sharing the CPU: It’s like a microwave
	Slide 39: Sharing the CPU: It’s like a microwave
	Slide 40: Sharing the CPU: It’s like a microwave
	Slide 41
	Slide 42: Sharing the Microwave Without Threads
	Slide 43: Sharing the Microwave Without Threads
	Slide 44: Sharing the Microwave Without Threads
	Slide 45: Sharing the Microwave Without Threads
	Slide 46: Process vs Threads?
	Slide 47: Process vs Threads?
	Slide 48: Process vs Threads?
	Slide 49: Process vs Threads?
	Slide 50: Process vs Threads?
	Slide 51: Multi-Threaded Process
	Slide 52: Multi-Threaded Program
	Slide 53: Multi-Threaded Program
	Slide 54: One Process with Two Threads
	Slide 55: Concurrency: Processor Sharing
	Slide 56: Concurrency: Processor Sharing
	Slide 57: Concurrency: Processor Sharing
	Slide 58: Concurrency: Processor Sharing
	Slide 59: Concurrency: Processor Sharing
	Slide 60: Concurrency: Processor Sharing
	Slide 61: Concurrency: Processor Sharing
	Slide 62: Concurrency: Processor Sharing
	Slide 63: Concurrency: Processor Sharing
	Slide 64: Concurrency: Processor Sharing
	Slide 65: Concurrency: Processor Sharing
	Slide 66: Now With Two Threads
	Slide 67: Now With Two Threads
	Slide 68: Now With Two Threads
	Slide 69: Now With Two Threads
	Slide 70: Poll: how are you?
	Slide 71: Poll: how are you?
	Slide 72: How can we do better? 3 Threads!
	Slide 73: How can we do better? 3 Threads!
	Slide 74: How is this better?
	Slide 75: How is this better?
	Slide 76: How is this better?
	Slide 77: How can we do better? 3 Threads!
	Slide 78: Processes vs. Threads: What's the Difference?
	Slide 79: Processes vs. Threads: What's the Difference?
	Slide 80: Processes vs. Threads: What's the Difference?
	Slide 81: Processes vs. Threads: What's the Difference?
	Slide 82: Processes vs. Threads: What's the Difference?
	Slide 83: Processes vs. Threads: What's the Difference?
	Slide 84: Processes vs. Threads: What's the Difference?
	Slide 85: Processes vs. Threads: What's the Difference?
	Slide 86: Processes vs. Threads: What's the Difference?
	Slide 87: Example: Visualizing the Mandlebrot Set
	Slide 88: And that’s it!

