
Recitation 9/18
Welcome back!



Today’s Topics

- GDB
- Structs
- Valgrind
- Makefiles
- Q&A if time



GDB Quick Facts

● C cannot be debugged like Java can with the IDE debugger(think IntelliJ from 
1200)

● Instead we use: gdb (GNU Debugger) for debugging
○  Very useful in tracking undefined behavior and state of variables



Segmentation Fault?

● Segmentation Fault
○ C doesn’t tell you much when it crashes, usually just prints: “Segmentation fault (Core 

Dumped)”
● Causes:

○ Dereferencing an uninitialized pointer
○ Dereferencing NULL
○ Using a previously freed pointer
○ Writing beyond the bounds of an array
○ Literally anything
○ …

● GDB is incredibly useful for debugging a segmentation fault 



Running GDB on a Program

● Open terminal in the folder the executable is in
● Run “gdb ./[executable]”
● Enter “l” (lowercase L) to see the code, or use “tui enable” to get a nice GUI

○ Tui = text user interface, shows a scrollable code page and your break points
● Enter “break [line number]” to stop the executable before that line number
● Type “run [command args]” to run the program
● Use “next” to pass over the next line(will pass over function calls)
● Use “step” to go to the next line, will go inside a function of the line you are on
● Use “continue” to run to the next break point
● Use “print [variable]” or “p [variable]” to see the value of a variable









One last thing: printing arrays

● We saw print <expression>, which works for basic variables, but it can also be 
used for arrays

● Given an array named “my_array” and length = len: 
○ print *my_array@len
○ Very helpful for printing out an array that is represented as a pointer



Makefiles!
This is mostly about writing Makefile btw



Makefiles - First of All, Why?

- Not needed if your project is one C file, just put command in terminal
- But what if your project is big, with many modules that depend off each other?

Example: PennPals from CIS 1200… but in C?

- PennPals = a server tracking multiple chat rooms
- Users, admins, server backend, protocols, chat rooms, and main are 

individual components of the project that can be split into different files for 
organization

- Chat room management involves both users and admins
- Server is composed of multiple chat rooms and protocols 



Makefiles - First of All, Why?

- Not needed if your project is one C file, just put command in terminal
- But what if your project is big, with many modules that depend off each other?

Example: PennPals from CIS 1200… but in C?

- PennPals = a server tracking multiple chat rooms
- Users, admins, server backend, protocols, chat rooms, and main are 

individual components of the project that can be split into different files for 
organization

- Chat room management involves both users and admins
- Server is composed of multiple chat rooms and protocols 



Makefiles - Why???

- If you’re debugging only chatroom.c, do you need to recompile all 5+ files to 
update the project? 

- In this same scenario (chatroom.c), do you only need to recompile 
chatroom.c?



Makefiles - just get to the point already!

Makefiles track each file’s dependencies 

- If one file changes, all other files that use that file also need to be recompiled
- Makefile keeps track of that so we don’t have to remember 



Components of a Makefile

target: the file we are making using this rule

dependencies: Makefile needs to make sure 
these files are up to date before it can compile 
target

command: Makefile will run these in order to 
get/compile the target

Makefile is made of rules

Rules look something like this:

target: prerequisites

command

command

command

In this example, dependencies could be just one file or a list of files separated by spaces 
(ie: prereq-0 prereq-1 prereq-2)



How do I know what rules to add?

- Generally you want a clean rule, you will tell it to remove files that are listed 

as target in the Makefile
- This is so when you run “make” again, it will recompile everything

clean: 

rm *.o, executible_1, executible_2, executible_3

- In this week’s homework, we specify which rules you should add
- If target x depends on a, b, and c, make sure you include 3 additional rules 

where a, b, and c are each the target



Dependencies: which files do I choose? (.c, .h, .o, executable)

1. Most obvious dependency is: “where is your file being compiled from?”

- chatroom.c compiles to chatroom.o, which compiles to chatroom (executable file)

- Therefore, file.o depends on file.c, and file (executable) depends on file.o

2. In partial compilation, file.o also depends on file.h 

3. Non-system #include statements on top of the .c file corresponding to target 

Example: if chatroom.c contains #include “user.h” and  #include “admin.h”, then: 

- chatroom.o also depends on user.h and admin.h 

- chatroom (the executable) also depends on user.o and admin.o

- If chatroom.c also contains #include <stdlib.h>, it’s not a dependency you need to include 



Makefile commands

In your single-file compilation command, you do both compilation and linking in 
one step: clang-15 -g3 -gdwarf-4 -Wall -o file file.c 

- Went straight from file.c to file (executable) without explicitly calling file.o

When multiple files (and dependencies) are involved, you split compiling and 
linking into 2 separate commands



Makefile commands Example

Compile chatroom.c into chatroom.  chatroom.c uses methods and structs 
defined in user.c and admin.c

(Partial) Compiling:  

chatroom.o: chatroom.c chatroom.h user.h admin.h

clang-15 -g3 -gdwarf-4 -Wall -c chatroom.c

Linking:

chatroom: chatroom.o user.o admin.o

clang-15 -g3 -gdwarf-4 -Wall -o chatroom chatroom.o user.o admin.o



Makefile tips

- Ensure your indents are all tabs and not spaces, otherwise Makefile won’t 
compile

- Draw a dependency DAG!  The file containing main method will be the 
source, and arrows will be drawn from target to dependency


