Recitation woooooooooo

 $\bullet \bullet \bullet$

10/9

Logic Gates

Boolean algebra rules on gates

Boolean rules still apply to gate-level circuits

 NOTE: There are actual differences between these circuits, but "logically" they are the same. More on this later in lecture.

PLAs

- Simplest way to turn truth tables into gate level systems
- Make a truth table, follow easy conversion process
- Downsides: not practical for large inputs, not simplest
 - In hardware will be slower

Practice for truth table -> PLA

- Given a 4 bit number, make a PLA that outputs 1 when the input is a multiple of 7
- Can this be simplified? If so, how?

Muxes

- Way of selecting an output from multiple inputs
- N select bits chooses from 2^N inputs
- Can choose from "groups" of bits by having mini muxes choose the same bits from a group switch n-bits with n muxes with the same select bits
- Practice question from lecture: how might you implement shifting for a 4 bit number using muxes?

The Multiplexer

- Selector/Chooser of signals
- Shorthand: "Mux"

Note: selector bits map all "O" to he top input, and increment each input "down"

If you don't want to follow this ordering, label your MUX in the HW

Simplifying boolean logic
DO NOT MEMORIZE
THIS. Understanding WHY
these things are true takes
less time and is more
effective. (Except DeMorgan's
law that one is epic)

Name	AND	OR
Identity	1 & A = A	1 A = 1
Null	0 & A = 0	0 A = A
Idempotent	A & A = A	A A = A
Inverse	A & ~A = 0	A ~A = 1
Commutative	A & B = B & A	A B = B A
Associative	(A & B) & C = A & (B & C)	(A B) C = A (B C)
Distributive	A (B & C) = (A B) & (A C)	A * (B C) = (A & B) (A & C)
Absorption	A & (A B) = A	A (A & B) = A
De Morgan's	~(A & B) = ~A ~B	~(A B) = ~A & ~B