
Midterm Review

Basics of C

Arrays

● Lists of data
● Have no concept of their own size
● Easily indexed

○ Ex: int arr[] = {1, 2, 3}; → arr[2] == 3
○ What is arr…?

Pointers

● Variables that “point” to other things
● * → dereferences a pointer
● & → gets the address of some data

What should this print?
Ans: 10, 59, 30, 50

Strings

● ALMOST identical to arrays, with some additional useful syntax and
one key feature: NULL TERMINATED

● Which of these is a string?
○ char str1[] = “hi”;
○ char str2[] = {‘h’, ‘i’};
○ char* str3 = “hi”;

Struct

● Use when you want to create your own data structure
● Ex:

typedef struct node_st {

int value;

node_st* next;

node_st* prev;

} Node;

*If you want to have the same data structure (or in this case a pointer to one) as
one of your fields, you HAVE to give it a temporary name up top (ex: node_st)

C Memory

● In this class, we think of memory as giant arrays that we can store variables
and programs in

● The Stack
○ Where all your functions and local variables exist
○ Once a function is returned, it gets “popped” off the stack

● The Heap
○ “Dynamic” memory → allocated during runtime
○ malloc()

● Global Memory
○ Declared outside any function
○ Can be accessed from any function
○ Any global variables exists as long as your program is running

Memory Demo
(watch on your own time)

https://docs.google.com/file/d/1qxUTD1oTj9dr8QlN48IjQEKvvrgJWe0m/preview

malloc() and free()

● In this class, we think of memory as giant arrays that we can store variables
and programs in

● The Stack
○ Where all your functions and local variables exist
○ Once a function is returned, it gets “popped” off the stack

● The Heap
○ “Dynamic” memory → allocated during runtime
○ malloc()

● Global Memory
○ Declared outside any function
○ Can be accessed from any function
○ Any global variables exists as long as your program is running

Binary and Hexadecimal

Binary Hexadecimal

2’s Complement

● Signed integers (can represent positive or negative values)
● Negative Numbers - 1 Most Significant Bit
● Positive Numbers - 0 Most Significant Bit
● Negate binary numbers : Invert (1’s turn to 0’s and 0’s turn to 1’s) -> Plus 1

Binary Practice - 2s complement - 8 bits

Base 2:
Base 10: 95
Base 16:

Base 2: 10 1101
Base 10:
Base 16:

Base 2:
Base 10:
Base 16: F8

Base 2:
Base 10: -3
Base 16:

Binary Practice - 2s complement - 8 bits

Base 2: 0101 1111
Base 10: 95
Base 16: 5F

Base 2: 10 1101
Base 10: 45
Base 16: 2D

Base 2: 11111000
Base 10: -8
Base 16: F8

Base 2: 11111101
Base 10: -3
Base 16: FD

Bit Operators
& - Bitwise And

1 & 1 = 1
1 & 0 = 0
0 & 1 = 0
0 & 0 = 0

| - Bitwise Or
1 | 1 = 1
1 | 0 = 1
0 | 1 = 1
0 | 0 = 0

^ - Xor
1 ^ 1 = 0
1 ^ 0 = 1
0 ^ 1 = 1
1 ^ 1 = 0

<< - Left Shift
1 << 1 = b10
1 << 2 = b100
1 << 3 = b1000

>> - Right Shift
2 >> 1 = 1
2 >> 2 = 0
2 >> 3 = 0

Notes:
2 >> -1 = undefined!
2 << -1 = undefined!

Logical (Boolean) Operators
&& - Logical And

T && T = T
T && F = F
F && T = F
F && F = F

|| - Logical Or
T || T = T
T || F = T
F || T = T
F || F = F

! - Logical Not
!T = F
!F = T

Boolean logic tricks
● What is the binary representation of the smallest 2C 16-bit integer?
● How to get -1 in binary without using - sign?
● !!x is not x
● Bitmask: &(~0), &0, & 0xFF
● -1 + 1 = 0
● x ^ 0; x ^ -1
● Setting a bit x | (1 << 2);
● Clearing a bit x & ~(1 << 2);
● Flip a bit: x ^ (1 << 2);

Logic Simplification

Identity

- A & 1 = A
- A & 0 = 0
- A | 1 = 1
- A | 0 = A
- ~~ A = A

Associative

- A & (B & C) = (A & B) & C
- A | (B | C) = (A | B) | C

Distributive

- A & (B | C) = (A & B) | (A & C)
- A | (B & C) = (A | B) & (A | C)

More Identity

- A & A = A
- A | A = A
- A & ~A = 0
- A | ~A = 1

De Morgan’s Law

- ~(A & B) = ~A | ~B
- ~(A | B) = ~A & ~B

CMOS and Logic Gates

CMOS

PUN (Pull Up Network)

- Comments output to 1 (Vdd)
- pMOS Transistors

PDN (Pull Down Network)

- Connects output to 0 (Ground)
- nMOS Transistors

PUN and PDN should be complimentary (Series and Parallel Gates)

Design

Start with PDN (when boolean expression evaluates to zero - negate expression)

Negat PDN expression to create complimentary PUN

Logic Gates

MUX

CMOS and Logic Gates Practice

Practice

Practice

1111

1010

0101

0000

Practice

Practice

Practice

Practice

