
Recitation 11/6
Welcome back!

Directives

.text and .data directives - throwback to lecture 3

- Cannot run a program from just reading a .c file
- That’s what compilers (and other stuff) are for!
- Compiler: from .c file to assembly code
- Assembler: from assembly code to machine code (rep in binary) and load into

memory according to the directives

Directives - cont’d

- Conceptually, memory is an array of bytes
- Directives help separate the different ways

memory is used in a program
- .text: code storage; memory you can only read or

execute (run as a program)
- .data: global and static variables; read-write

memory, not executable
- Some memory segments are not

specifically referenced by directives
- Stack & Heap: read/write during execution, but

also can be made not executable

*diagram not to scale

Memory Separation

Security issue: what if a program accepts user input (typed into terminal), and
malicious input is given?

Hacker: “here’s a string, but it’s actually code that if executed will cause your
program to crash.”

Computer: “that’s ok, as long as I don’t move the instruction pointer to where your
input is stored.”

Hacker: “Ok, then. What if I make the instruction pointer point to my code?”

.text permissions

Assumption #1: all code that should be executed was loaded into .text segment.

Therefore, .data segment, stack, and heap do not contain code that is intended to
be executed by the running program

Why don’t we turn off execution permissions for those segments of memory?

Solution is known as Execution-Space Protection, or Windows calls it Data
Execution Prevention (DEP)

.data, heap, and stack permissions

Assumption #2: the code, once loaded into .text, is not supposed to change.

Why don’t we turn off write permission for memory in the .text segment?

This is why .data and .text directives matter, by separating memory into different
“functions,” you can specialize read-write-execute permissions and (to some
extent) protect your program

Review of other directives

.globl : “global”

- Elevates status of symbol (function name or variable name) to global, so that you can use the
symbol outside of this file

- I.e. if you want to use your swap function in your sort function but they’re in two separate files, it is
possible to invoke swap if you first partially compile swap.s and and sort.s into swap.o and sort.o,
and then link the two .o files to create sort executable. This is only possible if you made the swap
function global, however.

.p2align: “power of 2 align”

- Given “.p2align x” in your code, every instruction will start on a memory address that is a multiple of
2x

- We add “.p2align 2” to the beginning of our code because 1 instruction = 32 bits = 4 bytes = 22 bytes
-> x = 2.

- Makes life easier for the hardware

Difference between directives and labels

Directives

- Finite set of commands for the assembler
- Not found in executable code
- Not all things that start with a period are

directives!
- Both directives and labels are not

indented, instructions underneath these
are indented

Labels

- End with a colon (unless they’re being
referenced)

- Do not do: jal main:
- Infinite number of possible labels because

they are user-defined
- Save the address of certain instructions to

make jumping and branching easier
- Beginning of loops
- Beginning of subroutines
- Return to the caller function
- if/else branches (conditionals)

- Function/subroutine labels are usually
lowercase and do not start with a period
(main, swap, sort)

- Other labels usually capitalized and start
with a period (.END, .LOOP, .ELSE)

Connecting things together

Software → Assembly → Hardware

This is what HW8 is :)You may have done this for HW7

Designing a processor

So given a list of assembly instructions, let’s design
a processor that can perform operations using
hardware components that are at our disposal.

First, what do we want to achieve with the processor? And what hardware do we
need for them?

Something to keep track of we are at, and where to go next

A temporary place for our operands

Something to perform the operation

A less temporary place to persist results

But how do we coordinate these components to perform the instruction?

Decoder

PC
● pointer to the current instruction in .text segment

Program memory
● Byte-addressable
● 32-bit instructions

Decoder
● From instruction to signals
● this is your hw!

If you were the designer of the processor, and you want to control the processor,
some questions you may wanna ask:

● Where do we get the inputs?
○ If inputs are hardcoded using immediate?
○ If inputs are from registers or from data memory?

● What operations do we perform?
● Do we save the result of the operation in memory?
● Where do we go after finishing the operation?

In other words, based on the 32-bit instruction, how do we “give orders” to the
various parts of the processor?

Why signals?

What do the signals control?

● Registers
○ Do we write to the registers? - regFile.WE
○ What do we write back to the registers? - regInputMux.CTL

● Arithmetic Logic Unit
○ What are the inputs? - ALUInputMux.CTL
○ What operation do we perform on the inputs? - ALU.CTL

● Data memory
○ Do we update any data in the memory? - DATA.WE

● Branch Unit
○ How do we update PC? - PCMux.CTL

For a written explanation
of how to determine
control signal values, see
EdPost #1303

https://edstem.org/us/courses/62374/discussion/5629620

Practice time ahhh

What are the control signals for each of these RISC-V instructions?

● auipc rd,imm20
● srl rd,rs1,rs2
● sb rs2,imm12(rs1)
● bge rs1,rs2,targ12

Example 1

Control Signal Value

regFile.WE

regInputMux.CTL

ALUInputMux.CTL

ALU.CTL

DATA.WE

PCMux.CTL

PCAddMux.CTL

Sol 1

Control Signal Value

regFile.WE 1

regInputMux.CTL 4

ALUInputMux.CTL X

ALU.CTL X

DATA.WE 0

PCMux.CTL 3

PCAddMux.CTL 1

Example 2

Control Signal Value

regFile.WE

regInputMux.CTL

ALUInputMux.CTL

ALU.CTL

DATA.WE

PCMux.CTL

PCAddMux.CTL

Sol 2

Control Signal Value

regFile.WE 1

regInputMux.CTL 0

ALUInputMux.CTL 0

ALU.CTL 15

DATA.WE 0

PCMux.CTL 3

PCAddMux.CTL X

Example 3

Control Signal Value

regFile.WE

regInputMux.CTL

ALUInputMux.CTL

ALU.CTL

DATA.WE

PCMux.CTL

PCAddMux.CTL

Sol 3

Control Signal Value

regFile.WE 0

regInputMux.CTL X

ALUInputMux.CTL 1

ALU.CTL 36

DATA.WE 1

PCMux.CTL 3

PCAddMux.CTL X

Example 4

Control Signal Value

regFile.WE

regInputMux.CTL

ALUInputMux.CTL

ALU.CTL

DATA.WE

PCMux.CTL

PCAddMux.CTL

Sol 4

Control Signal Value

regFile.WE 0

regInputMux.CTL X

ALUInputMux.CTL 0

ALU.CTL 22

DATA.WE 0

PCMux.CTL 1

PCAddMux.CTL X

