
Recitation 11/13
hello to anyone watching the recording :))

Important Note:

If you want to reference the single cycle processor diagram, do NOT use past
slides (for both lec and recitation) - the diagram has been since updated to correct
a few errors

All your reference sheets should be from the course website - if there are any
conflicts between those and the slides, trust the ref sheets over the slides

Practice (Conceptual) Questions

1. What do we know about the time duration of one cycle in our risc-v single
cycle processor?

2. What is the difference between PCAddMux.CTL and PCMux.CTL?
3. What are U type instructions? Why are they necessary?

a. Hint: what is the largest immediate we can use in an addi instruction?
4. Why do we save PC+4 in a register when we call jalr/jal?

a. Hint: why is it called “link” in “jump and link?” What is being linked?
5. If we were to assign a type (eg. int, char, char*) to PC, what type would it be?
6. Why is it important to perform sign extensions on the immediates before we

perform the intended operation in the ALU? (i.e. sign extend immediate before
adding it to rs1 in the addi instruction)

Endianness

If reading from left to right:

Little endian: least significant byte is read first

Big endian: most significant byte read first

Our eyes would have an easier time interpreting big endian byte ordering

But our local machines use little endianness

Network byte order is big endian

Endianness Example

int x = 0x12345678

In big endian: 12 34 56 78

In little endian: 78 56 34 12

address 0 1 2 3

Value (hex) 12 34 56 78

address 0 1 2 3

Value (hex) 78 56 34 12

Endianness - why are there two?

advantages and disadvantages when reading memory from left to right

Big Endianness:
- First byte indicates if value is positive or negative
- Easier to determine magnitude of the value

Little Endianness:
- Bit arithmetic is performed from LSB moving the carry-over towards the MSB, more efficient

on little-endian systems
- Can interpret small values i.e. 0x4A000000 as the same value reading only 1 byte (0x4A), 2

bytes (0x004A), or 4 bytes without recalculating address
- Potential avenue for code optimization by low-level (asm) programmers

This shows: there are lots of deliberate choices to be made about how information (stored in 1’s
and 0’s) can be interpreted!

Any questions on the following functions?

