Introduction to the Theory of Computation Languages, Automata, Grammars Slides for CIS262

Jean Gallier

February 21, 2020

Chapter 1

Introduction

1.1 Generalities, Motivations, Problems

In this part of the course we want to understand

- What is a language?
- How do we define a language?
- How do we manipulate languages, combine them?
- What is the complexity of a language?

Roughly, there are two dual views of languages:
(A) The recognition point view.
(B) The generation point of view.

No matter how we view a language, we are typically considering two things:
(1) The syntax, i.e., what are the "legal" strings in that language (what are the "grammar rules"?).
(2) The semantics of strings in the language, i.e., what is the meaning (or interpretation) of a string.

The semantics is usually a lot more interesting than the syntax but unfortunately much more difficult to deal with!

Therefore, sorry, we will only be dealing with syntax!

In (A), we typically assume some kind of "black box", M, (an automaton) that takes a string, w, as input and returns two possible answers:

Yes, the string w is accepted, which means that w belongs to the language, L, that we are trying to define.

No, the string w is rejected, which means that w does not belong to the language, L.

Usually, the black box M gives a definite answer for every input after a finite number of steps, but not always.

For example, a Turing machine may go on computing forever and not give any answer for certain strings not in the language. This is an example of undecidability.

The black box may compute deterministically or nondeterministically, which means roughly that on input w, the machine M is allowed to try different computations and to ignore failing computations as long as there is some successful computation on input w.

This affects greatly the complexity of recognition, i.e,. how many steps it takes to process w.

Sometimes, a nondeterministic version of an automaton turns out to be equivalent to the deterministic version (although, with different complexity).

This tends to happen for very restrictive models - where nondeterminism does not help, or for very powerful models - where again, nondeterminism does not help, but because the deterministic model is already very powerful!

We will investigate automata of increasing power of recognition:
(1) Deterministic and nondeterministic finite automata (DFA's and NFA's, their power is the same).
(2) Pushdown automata (PDA's) and determinstic pushdown automata (DPDA's), here PDA $>$ DPDA.
(3) Deterministic and nondeterministic Turing machines (their power is the same).
(4) If time permits, we will also consider some restricted type of Turing machine known as LBA (linear bounded automaton).

In (B), we are interested in formalisms that specify a language in terms of rules that allow the generation of "legal" strings. The most common formalism is that of a formal grammar.

Remember:

- An automaton recognizes (or accepts) a language,
- a grammar generates a language.
- grammar is spelled with an "a" (not with an "e").
- The plural of automaton is automata (not automatons).

For "good" classes of grammars, it is possible to build an automaton, M_{G}, from the grammar, G, in the class, so that M_{G} recognizes the language, $L(G)$, generated by the grammar G.

However, grammars are nondeterministic in nature. Thus, even if we try to avoid nondeterministic automata, we usually can't escape having to deal with them.

We will investigate the following types of grammars (the so-called Chomsky hierarchy) and the corresponding families of languages:
(1) Regular grammars (type 3-languages).
(2) Context-free grammars (type 2-languages).
(3) The recursively enumerable languages or r.e. sets (type 0-languages).
(4) If time permit, context-sensitive languages (type 1-languages).

Miracle: The grammars of type (1), (2), (3), (4) correspond exactly to the automata of the corresponding type!

Furthermore, there are algorithms for converting grammars to the corresponding automata (and backward), although some of these algorithms are not practical.

Building an automaton from a grammar is an important practical problem in language processing. A lot is known for the regular and the context-free grammars, but there is still room for improvements and innovations!

There are other ways of defining families of languages, for example

Inductive closures.

In this style of definition, a collection of basic (atomic) languages is specified, some operations to combine languages are also specified, and the family of languages is defined as the smallest one containing the given atomic languages and closed under the operations.

Investigating closure properties (for example, union, intersection) is a way to assess how "robust" (or complex) a family of languages is.

Well, it is now time to be precise!

Chapter 2

Basics of Formal Language Theory

2.1 Review of Some Basic Math Notation and Definitions
$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
The natural numbers,

$$
\mathbb{N}=\{0,1,2, \ldots\}
$$

The integers,

$$
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

The rationals,

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\}
$$

The reals, \mathbb{R}.

The complex numbers,

$$
\mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}\}
$$

Given any set X, the power set of X is the set of all subsets of X and is denoted 2^{X}.

The notation

$$
f: X \rightarrow Y
$$

denotes a function with domain X and range (or codomain) Y.

$$
\operatorname{graph}(f)=\{(x, f(x)\} \mid x \in X\} \subseteq X \times Y
$$

is the graph of f.

$$
\operatorname{Im}(f)=f(X)=\{y \in Y \mid \exists x \in X, y=f(x)\} \subseteq Y
$$ is the image of f.

More generally, if $A \subseteq X$, then

$$
f(A)=\{y \in Y \mid \exists x \in A, y=f(x)\} \subseteq Y
$$

is the (direct) image of A.

If $B \subseteq Y$, then

$$
f^{-1}(B)=\{x \in X \mid f(x) \in B\} \subseteq X
$$

is the inverse image (or pullback) of B.
$f^{-1}(B)$ is a set; it might be empty even if $B \neq \emptyset$.

Given two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, the function $g \circ f: X \rightarrow Z$ given by

$$
(g \circ f)(x)=g(f(x)) \quad \text { for all } x \in X
$$

is the composition of f and g.
The function $\operatorname{id}_{X}: X \rightarrow X$ given by

$$
\operatorname{id}_{X}(x)=x \quad \text { for all } x \in X
$$

is the identity function (of X).
A function $f: X \rightarrow Y$ is injective (old terminology one-to-one) if for all $x_{1}, x_{2} \in X$,
if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$;
equivalently if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Fact: If $X \neq \emptyset$ (and so $Y \neq \emptyset$), a function $f: X \rightarrow Y$ is injective iff there is a function $r: Y \rightarrow X$ (a left inverse) such that

$$
r \circ f=\operatorname{id}_{X}
$$

Note: r is surjective.

A function $f: X \rightarrow Y$ is surjective (old terminology onto) if for all $y \in Y$, there is some $x \in X$ such that $y=f(x)$, iff

$$
f(X)=Y
$$

Fact: If $X \neq \emptyset$ (and so $Y \neq \emptyset$), a function $f: X \rightarrow Y$ is surjective iff there is a function $s: Y \rightarrow X$ (a right inverse or section) such that

$$
f \circ s=\operatorname{id}_{Y}
$$

Note: s is injective.

A function $f: X \rightarrow Y$ is bijective if it is injective and surjective.

Fact: If $X \neq \emptyset$ (and so $Y \neq \emptyset$), a function $f: X \rightarrow Y$ is bijective if there is a function $f^{-1}: Y \rightarrow X$ which is a left and a right inverse, that is

$$
f^{-1} \circ f=\operatorname{id}_{X}, \quad f \circ f^{-1}=\operatorname{id}_{Y} .
$$

The function f^{-1} is unique and called the inverse of f. The function f is said to be invertible.

A binary relation R between two sets X and Y is a subset

$$
R \subseteq X \times Y=\{(x, y) \mid x \in X, y \in Y\}
$$

$$
\operatorname{dom}(R)=\{x \in X \mid \exists y \in Y,(x, y) \in R\} \subseteq X
$$

is the domain of R.

$$
\operatorname{range}(R)=\{y \in Y \mid \exists x \in X,(x, y) \in R\} \subseteq Y
$$

is the range of R.
We also write $x R y$ instead of $(x, y) \in R$.

Given two relations $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, their composition $R \circ S \subseteq X \times Z$ is given by
$R \circ S=\{(x, z) \mid \exists y \in Y,(x, y) \in R \quad$ and $\quad(y, z) \in S\}$.
(2) Note that if R and S are the graphs of two functions f and g, then $R \circ S$ is the graph of $g \circ f$.

$$
I_{X}=\{(x, x) \mid x \in X\}
$$

is the identity relation on X.

Given $R \subseteq X \times Y$, the converse $R^{-1} \subseteq Y \times X$ of R is given by

$$
R^{-1}=\{(x, y) \in Y \times X \mid(y, x) \in R\}
$$

A relation $R \subseteq X \times X$ is transitive if for all $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

A relation $R \subseteq X \times X$ is transitive iff $R \circ R \subseteq R$.

A relation $R \subseteq X \times X$ is reflexive if $(x, x) \in R$ for all $x \in X$

A relation $R \subseteq X \times X$ is reflexive iff $I_{X} \subseteq R$.
A relation $R \subseteq X \times X$ is symmetric if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$

A relation $R \subseteq X \times X$ is symmetric iff $R^{-1} \subseteq R$.
Given $R \subseteq X \times X$ (a relation on X), define R^{n} by

$$
\begin{aligned}
R^{0} & =I_{X} \\
R^{n+1} & =R \circ R^{n}
\end{aligned}
$$

The transtive closure R^{+}of R is given by

$$
R^{+}=\bigcup_{n \geq 1} R^{n}
$$

Fact. R^{+}is the smallest transitive relation containing R.

The reflexive and transitive closure R^{*} of R is given by

$$
R^{*}=\bigcup_{n \geq 0} R^{n}=R^{+} \cup I_{X}
$$

Fact. R^{*} is the smallest transitive and reflexive relation containing R.

A relation $R \subseteq X \times X$ is an equivalence relation if it is reflexive, symmetric, and transitive.

Fact. The smallest equivalence relation containing a relation $R \subseteq X \times X$ is given by

$$
\left(R \cup R^{-1}\right)^{*}
$$

A relation $R \subseteq X \times X$ is antisymmetric if for all $x, y \in$ X, if $(x, y) \in R$ and $(y, x) \in R$, then $x=y$.

A relation $R \subseteq X \times X$ is a partial order if it is reflexive, transitive, and antisymmetic.

A partial order $R \subseteq X \times X$ is a total order if for all $x, y \in X$, either $(x, y) \in R$ or $(y, x) \in R$.

2.2 Alphabets, Strings, Languages

Our view of languages is that a language is a set of strings.

In turn, a string is a finite sequence of letters from some alphabet. These concepts are defined rigorously as follows.

Definition 2.1. An alphabet Σ is any finite set.

We often write $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$. The a_{i} are called the symbols of the alphabet.

Examples:
$\Sigma=\{a\}$
$\Sigma=\{a, b, c\}$
$\Sigma=\{0,1\}$
$\Sigma=\{\alpha, \beta, \gamma, \delta, \epsilon, \lambda, \varphi, \psi, \omega, \mu, \nu, \rho, \sigma, \eta, \xi, \zeta\}$

A string is a finite sequence of symbols. Technically, it is convenient to define strings as functions. For any integer $n \geq 1$, let

$$
[n]=\{1,2, \ldots, n\}
$$

and for $n=0$, let

$$
[0]=\emptyset
$$

Definition 2.2. Given an alphabet Σ, a string over Σ (or simply a string) of length n is any function

$$
u:[n] \rightarrow \Sigma .
$$

The integer n is the length of the string u, and it is denoted as $|u|$.

When $n=0$, the special string $u:[0] \rightarrow \Sigma$ of length 0 is called the empty string, or null string, and is denoted as ϵ.

Given a string $u:[n] \rightarrow \Sigma$ of length $n \geq 1, u(i)$ is the i-th letter in the string u. For simplicity of notation, we write u_{i} instead of $u(i)$, and we denote the string $u=u(1) u(2) \cdots u(n)$ as

$$
u=u_{1} u_{2} \cdots u_{n}
$$

with each $u_{i} \in \Sigma$.

For example, if $\Sigma=\{a, b\}$ and $u:[3] \rightarrow \Sigma$ is defined such that $u(1)=a, u(2)=b$, and $u(3)=a$, we write

$$
u=a b a .
$$

Other examples of strings are
work, fun, gabuzomeuh

Strings of length 1 are functions $u:[1] \rightarrow \Sigma$ simply picking some element $u(1)=a_{i}$ in Σ.

Thus, we will identify every symbol $a_{i} \in \Sigma$ with the corresponding string of length 1 .

The set of all strings over an alphabet Σ, including the empty string, is denoted as Σ^{*}.

Observe that when $\Sigma=\emptyset$, then

$$
\emptyset^{*}=\{\epsilon\} .
$$

When $\Sigma \neq \emptyset$, the set Σ^{*} is countably infinite. Later on, we will see ways of ordering and enumerating strings.

Strings can be juxtaposed, or concatenated.

Definition 2.3. Given an alphabet Σ, given any two strings $u:[m] \rightarrow \Sigma$ and $v:[n] \rightarrow \Sigma$, the concatenation $u \cdot v$ (also written uv) of u and v is the string $u v:[m+n] \rightarrow \Sigma$, defined such that

$$
u v(i)= \begin{cases}u(i) & \text { if } 1 \leq i \leq m \\ v(i-m) & \text { if } m+1 \leq i \leq m+n\end{cases}
$$

In particular, $u \epsilon=\epsilon u=u$. Observe that

$$
|u v|=|u|+|v| .
$$

For example, if $u=g a$, and $v=b u z o$, then

$$
u v=g a b u z o
$$

It is immediately verified that

$$
u(v w)=(u v) w
$$

Thus, concatenation is a binary operation on Σ^{*} which is associative and has ϵ as an identity.

Note that generally, $u v \neq v u$, for example for $u=a$ and $v=b$.

Given a string $u \in \Sigma^{*}$ and $n \geq 0$, we define u^{n} recursively as follows:

$$
\begin{aligned}
u^{0} & =\epsilon \\
u^{n+1} & =u^{n} u \quad(n \geq 0) .
\end{aligned}
$$

Clearly, $u^{1}=u$, and it is an easy exercise to show that

$$
u^{n} u=u u^{n}, \quad \text { for all } n \geq 0
$$

For the induction step, we have

$$
\begin{aligned}
u^{n+1} u & =\left(u^{n} u\right) u & & \text { by definition of } u^{n+1} \\
& =\left(u u^{n}\right) u & & \text { by the induction hypothesis } \\
& =u\left(u^{n} u\right) & & \text { by associativity } \\
& =u u^{n+1} & & \text { by definition of } u^{n+1} .
\end{aligned}
$$

Definition 2.4. Given an alphabet Σ, given any two strings $u, v \in \Sigma^{*}$ we define the following notions as follows:
u is a prefix of v iff there is some $y \in \Sigma^{*}$ such that

$$
v=u y
$$

u is a suffix of v iff there is some $x \in \Sigma^{*}$ such that

$$
v=x u
$$

u is a substring of v iff there are some $x, y \in \Sigma^{*}$ such that

$$
v=x u y
$$

We say that u is a proper prefix (suffix, substring) of v iff u is a prefix (suffix, substring) of v and $u \neq v$.

For example, $g a$ is a prefix of $g a b u z o$,
$z o$ is a suffix of gabuzo and
$b u z$ is a substring of gabuzo.

Recall that a partial ordering \leq on a set S is a binary relation $\leq \subseteq S \times S$ which is reflexive, transitive, and antisymmetric.

The concepts of prefix, suffix, and substring, define binary relations on Σ^{*} in the obvious way. It can be shown that these relations are partial orderings.

Another important ordering on strings is the lexicographic (or dictionary) ordering.

Definition 2.5. Given an alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ assumed totally ordered such that $a_{1}<a_{2}<\cdots<a_{k}$, given any two strings $u, v \in \Sigma^{*}$, we define the lexicographic ordering \preceq as follows:
$u \preceq v \quad\left\{\begin{array}{l}\text { (1) if } v=u y, \text { for some } y \in \Sigma^{*}, \text { or } \\ \text { (2) if } u=x a_{i} y, v=x a_{j} z, a_{i}<a_{j}, \\ \text { with } a_{i}, a_{j} \in \Sigma, \text { and for some } x, y, z \in \Sigma^{*} .\end{array}\right.$

Note that cases (1) and (2) are mutually exclusive. In case (1) u is a prefix of v. In case (2) $v \npreceq u$ and $u \neq v$.

For example

$$
a b \preceq b, \quad \text { gallhager } \preceq \text { gallier } .
$$

It is fairly tedious to prove that the lexicographic ordering is in fact a partial ordering.

In fact, it is a total ordering, which means that for any two strings $u, v \in \Sigma^{*}$, either $u \preceq v$, or $v \preceq u$.

The reversal w^{R} of a string w is defined inductively as follows:

$$
\begin{aligned}
\epsilon^{R} & =\epsilon \\
(u a)^{R} & =a u^{R}
\end{aligned}
$$

where $a \in \Sigma$ and $u \in \Sigma^{*}$.

For example

$$
\text { reillag }=\text { gallier }^{R} .
$$

By setting $u=\epsilon$ in $(u a)^{R}=a u^{R}$ and using the fact that $\epsilon^{R}=\epsilon$, we obtain $a^{R}=a$ for all $a \in \Sigma$.

It can be shown that

$$
(u v)^{R}=v^{R} u^{R}
$$

Thus,

$$
\left(u_{1} \ldots u_{n}\right)^{R}=u_{n}^{R} \ldots u_{1}^{R}
$$

and when $u_{i} \in \Sigma$, we have

$$
\left(u_{1} \ldots u_{n}\right)^{R}=u_{n} \ldots u_{1}
$$

We can now define languages.

Definition 2.6. Given an alphabet Σ, a language over Σ (or simply a language) is any subset L of Σ^{*}.

If $\Sigma \neq \emptyset$, there are uncountably many languages.

A Quick Review of Finite, Infinite, Countable, and Uncountable Sets

For details and proofs, see Discrete Mathematics, by Gallier.

Let $\mathbb{N}=\{0,1,2, \ldots\}$ be the set of natural numbers.
Recall that a set X is finite if there is some natural number $n \in \mathbb{N}$ and a bijection between X and the set $[n]=\{1,2, \ldots, n\}$. (When $n=0, X=\emptyset$, the empty set.)

The number n is uniquely determined. It is called the cardinality (or size) of X and is denoted by $|X|$.

A set is infinite iff it is not finite.

Recall that any injection or surjection of a finite set to itself is in fact a bijection.

The above fails for infinite sets.

The pigeonhole principle asserts that there is no bijection between a finite set X and any proper subset Y of X.

Consequence: If we think of X as a set of n pigeons and if there are only $m<n$ boxes (corresponding to the elements of Y), then at least two of the pigeons must share the same box.

As a consequence of the pigeonhole principle, a set X is infinite iff it is in bijection with a proper subset of itself.

For example, we have a bijection $n \mapsto 2 n$ between \mathbb{N} and the set $2 \mathbb{N}$ of even natural numbers, a proper subset of \mathbb{N}, so \mathbb{N} is infinite.

Definition 2.7. A set X is countable (or denumerable) if there is an injection from X into \mathbb{N}.

If X is not the empty set, then X is countable iff there is a surjection from \mathbb{N} onto X.

Fact. It can be shown that a set X is countable if either it is finite or if it is in bijection with \mathbb{N} (in which case it is infinite).

We will see later that $\mathbb{N} \times \mathbb{N}$ is countable. As a consequence, the set \mathbb{Q} of rational numbers is countable.

A set is uncountable if it is not countable.

For example, \mathbb{R} (the set of real numbers) is uncountable.
Similarly

$$
(0,1)=\{x \in \mathbb{R} \mid 0<x<1\}
$$

is uncountable. However, there is a bijection between $(0,1)$ and \mathbb{R} (find one!)

The set $2^{\mathbb{N}}$ of all subsets of \mathbb{N} is uncountable. This is a special case of Cantor's theorem discussed below.

Suppose $|\Sigma|=k$ with $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$.
There are k^{n} strings of length n and $\left(k^{n+1}-1\right) /(k-1)$ strings of length at most n over Σ; when $k=1$, the second formula should be replaced by $n+1$.

If $\Sigma \neq \emptyset$, then the set Σ^{*} of all strings over Σ is infinite and countable, as we now show.

If $k=1$ write $a=a_{1}$, and then

$$
\{a\}^{*}=\left\{\epsilon, a, a a, a a a, \ldots, a^{n}, \ldots\right\} .
$$

We have the bijection $n \mapsto a^{n}$ from \mathbb{N} to $\{a\}^{*}$.

If $k \geq 2$, then we can think of the string

$$
u=a_{i_{1}} \cdots a_{i_{n}}
$$

as a representation of the integer $\nu(u)$ in base k shifted by $\left(k^{n}-1\right) /(k-1)$, with

$$
\begin{aligned}
& \nu(u)=i_{1} k^{n-1}+i_{2} k^{n-2}+\cdots+i_{n-1} k+i_{n} \\
& =\frac{k^{n}-1}{k-1}+\left(i_{1}-1\right) k^{n-1}+\cdots+\left(i_{n-1}-1\right) k+i_{n}-1
\end{aligned}
$$

(and with $\nu(\epsilon)=0$), where $1 \leq i_{j} \leq k$ for $j=1, \ldots, n$.
We leave it as an exercise to show that $\nu: \Sigma^{*} \rightarrow \mathbb{N}$ is a bijection.

In fact, ν corresponds to the enumeration of Σ^{*} where u precedes v if $|u|<|v|$, and u precedes v in the lexicographic ordering if $|u|=|v|$.

For example, if $k=2$ and if we write $\Sigma=\{a, b\}$, then the enumeration begins with

$$
\epsilon
$$

0
a, b,
1, 2,
$a a, a b, b a, b b$,
3, 4, 5, 6,
$a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b$
$7, \quad 8, \quad 9, \quad 10,11,12,13,14$

To get the next row, concatenate a on the left, and then concatenate b on the left.

$$
\nu(b a b)=2 \cdot 2^{2}+1 \cdot 2^{1}+2=8+2+2=12 .
$$

It works!

On the other hand, if $\Sigma \neq \emptyset$, the set $2^{\Sigma^{*}}$ of all subsets of Σ^{*} (all languages) is uncountable.

Indeed, we can show that there is no surjection from \mathbb{N} onto $2^{\Sigma^{*}}$.

First, we will show that there is no surjection from Σ^{*} onto $2^{\Sigma^{*}}$. This is an instance of Cantor's Theorem.

We claim that if there is no surjection from Σ^{*} onto $2^{\Sigma^{*}}$, then there is no surjection from \mathbb{N} onto $2^{\Sigma^{*}}$ either.

Proof. Assume by contradiction that there is a surjection $g: \mathbb{N} \rightarrow 2^{\Sigma^{*}}$.

But, if $\Sigma \neq \emptyset$, then Σ^{*} is infinite and countable, thus we have the bijection $\nu: \Sigma^{*} \rightarrow \mathbb{N}$. Then the composition

$$
\Sigma^{*} \xrightarrow{\nu} \mathbb{N} \xrightarrow{g} 2^{\Sigma^{*}}
$$

is a surjection, because the bijection ν is a surjection, g is a surjection, and the composition of surjections is a surjection, contradicting the hypothesis that there is no surjection from Σ^{*} onto $2^{\Sigma^{*}}$.

We use a diagonalization argument to prove Cantor's Theorem.

Theorem 2.1. (Cantor, 1873) For every set X, there is no surjection from X onto 2^{X}.
Proof. Assume there is a surjection $h: X \rightarrow 2^{X}$, and consider the set

$$
D=\{x \in X \mid x \notin h(x)\} \in 2^{X}
$$

By definition, for any $x \in X$ we have $x \in D$ iff $x \notin h(x)$. Since h is surjective, there is some $y \in X$ such that $h(y)=D$. Then, by definition of D and since $D=h(y)$, we have
$y \in D$ iff $y \notin h(y)=D$,
a contradiction. Therefore, h is not surjective.

Applying Theorem 2.1 to the case where $X=\Sigma^{*}$, we deduce that there is no surjection from Σ^{*} onto $2^{\Sigma^{*}}$.

Therefore, if $\Sigma \neq \emptyset$, then $2^{\Sigma^{*}}$ is uncountable.

Applying Theorem 2.1 to the case where $X=\mathbb{N}$, we see that there is no surjection from \mathbb{N} onto $2^{\mathbb{N}}$. This shows that $2^{\mathbb{N}}$ is uncountable, as we claimed earlier.

For any set X, by mapping $x \in X$ to $\{x\} \in 2^{X}$, we obtain an injection of X into 2^{X}. However, Cantor's theorem implies that there is no injection of 2^{X} into X.

Intuitively, 2^{X} is strictly larger than X.
Since $2^{\Sigma^{*}}$ is uncountable. (if $\Sigma \neq \emptyset$), we will try to single out countable "tractable" families of languages.

We will begin with the family of regular languages, and then proceed to the context-free languages.

We now turn to operations on languages.

2.3 Operations on Languages

A way of building more complex languages from simpler ones is to combine them using various operations. First, we review the set-theoretic operations of union, intersection, and complementation.

Given some alphabet Σ, for any two languages L_{1}, L_{2} over Σ, the union $L_{1} \cup L_{2}$ of L_{1} and L_{2} is the language

$$
L_{1} \cup L_{2}=\left\{w \in \Sigma^{*} \mid w \in L_{1} \quad \text { or } \quad w \in L_{2}\right\} .
$$

The intersection $L_{1} \cap L_{2}$ of L_{1} and L_{2} is the language

$$
L_{1} \cap L_{2}=\left\{w \in \Sigma^{*} \mid w \in L_{1} \quad \text { and } \quad w \in L_{2}\right\}
$$

The difference $L_{1}-L_{2}$ of L_{1} and L_{2} is the language

$$
L_{1}-L_{2}=\left\{w \in \Sigma^{*} \mid w \in L_{1} \quad \text { and } \quad w \notin L_{2}\right\}
$$

The difference is also called the relative complement.

A special case of the difference is obtained when $L_{1}=\Sigma^{*}$, in which case we define the complement \bar{L} of a language L as

$$
\bar{L}=\left\{w \in \Sigma^{*} \mid w \notin L\right\} .
$$

The above operations do not use the structure of strings. The following operations use concatenation.

Definition 2.8. Given an alphabet Σ, for any two languages L_{1}, L_{2} over Σ, the concatenation $L_{1} L_{2}$ of L_{1} and L_{2} is the language

$$
L_{1} L_{2}=\left\{w \in \Sigma^{*} \mid \exists u \in L_{1}, \exists v \in L_{2}, w=u v\right\}
$$

For any language L, we define L^{n} as follows:

$$
\begin{aligned}
L^{0} & =\{\epsilon\} \\
L^{n+1} & =L^{n} L \quad(n \geq 0)
\end{aligned}
$$

By setting $n=0$ in the above equation we get $L^{1}=L$.

The following properties are easily verified:

$$
\begin{aligned}
L \emptyset & =\emptyset, \\
\emptyset L & =\emptyset, \\
L\{\epsilon\} & =L, \\
\{\epsilon\} L & =L, \\
\left(L_{1} \cup\{\epsilon\}\right) L_{2} & =L_{1} L_{2} \cup L_{2}, \\
L_{1}\left(L_{2} \cup\{\epsilon\}\right) & =L_{1} L_{2} \cup L_{1}, \\
L^{n} L & =L L^{n} .
\end{aligned}
$$

In general, $L_{1} L_{2} \neq L_{2} L_{1}$.

So far, the operations that we have introduced, except complementation (since $\bar{L}=\Sigma^{*}-L$ is infinite if L is finite and Σ is nonempty), preserve the finiteness of languages. This is not the case for the next two operations.

Definition 2.9. Given an alphabet Σ, for any language L over Σ, the Kleene $*$-closure L^{*} of L is the language

$$
L^{*}=\bigcup_{n \geq 0} L^{n}
$$

The Kleene + -closure L^{+}of L is the language

$$
L^{+}=\bigcup_{n \geq 1} L^{n}
$$

Thus, L^{*} is the infinite union

$$
L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots \cup L^{n} \cup \ldots
$$

and L^{+}is the infinite union

$$
L^{+}=L^{1} \cup L^{2} \cup \ldots \cup L^{n} \cup \ldots
$$

Since $L^{1}=L$, both L^{*} and L^{+}contain L.

In fact,

$$
\begin{aligned}
L^{+}= & \left\{w \in \Sigma^{*}, \exists n \geq 1,\right. \\
& \left.\exists u_{1} \in L \cdots \exists u_{n} \in L, w=u_{1} \cdots u_{n}\right\},
\end{aligned}
$$

and since $L^{0}=\{\epsilon\}$,

$$
\begin{aligned}
L^{*}= & \{\epsilon\} \cup\left\{w \in \Sigma^{*}, \exists n \geq 1,\right. \\
& \left.\exists u_{1} \in L \cdots \exists u_{n} \in L, w=u_{1} \cdots u_{n}\right\} .
\end{aligned}
$$

Thus, the language L^{*} always contains ϵ, and we have

$$
L^{*}=L^{+} \cup\{\epsilon\} .
$$

However, if $\epsilon \notin L$, then $\epsilon \notin L^{+}$. The following is easily shown:

$$
\begin{aligned}
\emptyset^{*} & =\{\epsilon\} \\
L^{+} & =L^{*} L \\
L^{* *} & =L^{*} \\
L^{*} L^{*} & =L^{*}
\end{aligned}
$$

The Kleene closures have many other interesting properties.

Homomorphisms are also very useful.
Given two alphabets Σ, Δ, a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ between Σ^{*} and Δ^{*} is a function $h: \Sigma^{*} \rightarrow \Delta^{*}$ such that

$$
h(u v)=h(u) h(v) \quad \text { for all } u, v \in \Sigma^{*} .
$$

Letting $u=v=\epsilon$, we get

$$
h(\epsilon)=h(\epsilon) h(\epsilon),
$$

which implies that (why?)

$$
h(\epsilon)=\epsilon
$$

If $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$, it is easily seen that h is completely determined by $h\left(a_{1}\right), \ldots, h\left(a_{k}\right)$ (why?)

Example: $\Sigma=\{a, b, c\}, \Delta=\{0,1\}$, and

$$
h(a)=01, \quad h(b)=011, \quad h(c)=0111
$$

For example

$$
h(a b b c)=010110110111
$$

Given any language $L_{1} \subseteq \Sigma^{*}$, we define the image $h\left(L_{1}\right)$ of L_{1} as

$$
h\left(L_{1}\right)=\left\{h(u) \in \Delta^{*} \mid u \in L_{1}\right\} .
$$

Given any language $L_{2} \subseteq \Delta^{*}$, we define the inverse image $h^{-1}\left(L_{2}\right)$ of L_{2} as

$$
h^{-1}\left(L_{2}\right)=\left\{u \in \Sigma^{*} \mid h(u) \in L_{2}\right\}
$$

We now turn to the first formalism for defining languages, Deterministic Finite Automata (DFA's)

