
Introduction to the Theory of Computation
Languages, Automata, Grammars

Slides for CIS262

Jean Gallier

February 21, 2020

2

Chapter 1

Introduction

1.1 Generalities, Motivations, Problems

In this part of the course we want to understand

• What is a language?

• How do we define a language?

• How do we manipulate languages, combine them?

• What is the complexity of a language?

Roughly, there are two dual views of languages:

(A) The recognition point view.

(B) The generation point of view.

3

4 CHAPTER 1. INTRODUCTION

No matter how we view a language, we are typically con-
sidering two things:

(1) The syntax , i.e., what are the “legal” strings in that
language (what are the “grammar rules”?).

(2) The semantics of strings in the language, i.e., what
is the meaning (or interpretation) of a string.

The semantics is usually a lot more interesting than the
syntax but unfortunately much more difficult to deal with!

Therefore, sorry, we will only be dealing with syntax!

In (A), we typically assume some kind of “black box”,
M , (an automaton) that takes a string, w, as input and
returns two possible answers:

Yes, the string w is accepted , which means that w be-
longs to the language, L, that we are trying to define.

No, the string w is rejected , which means that w does
not belong to the language, L.

1.1. GENERALITIES, MOTIVATIONS, PROBLEMS 5

Usually, the black boxM gives a definite answer for every
input after a finite number of steps, but not always.

For example, a Turing machine may go on computing
forever and not give any answer for certain strings not in
the language. This is an example of undecidability .

The black box may compute deterministically or non-
deterministically , which means roughly that on input w,
the machine M is allowed to try different computations
and to ignore failing computations as long as there is some
successful computation on input w.

This affects greatly the complexity of recognition, i.e,.
how many steps it takes to process w.

6 CHAPTER 1. INTRODUCTION

Sometimes, a nondeterministic version of an automaton
turns out to be equivalent to the deterministic version
(although, with different complexity).

This tends to happen for very restrictive models—where
nondeterminism does not help, or for very powerful
models—where again, nondeterminism does not help, but
because the deterministic model is already very powerful!

We will investigate automata of increasing power of recog-
nition:

(1) Deterministic and nondeterministic finite automata
(DFA’s and NFA’s, their power is the same).

(2) Pushdown automata (PDA’s) and determinstic push-
down automata (DPDA’s), here PDA > DPDA.

(3) Deterministic and nondeterministic Turing machines
(their power is the same).

(4) If time permits, we will also consider some restricted
type of Turing machine known as LBA (linear bounded
automaton).

1.1. GENERALITIES, MOTIVATIONS, PROBLEMS 7

In (B), we are interested in formalisms that specify a
language in terms of rules that allow the generation of
“legal” strings. The most common formalism is that of a
formal grammar .

Remember:

• An automaton recognizes (or accepts) a language,

• a grammar generates a language.

• grammar is spelled with an “a” (not with an “e”).

• The plural of automaton is automata
(not automatons).

For “good” classes of grammars, it is possible to build an
automaton, MG, from the grammar, G, in the class, so
thatMG recognizes the language, L(G), generated by the
grammar G.

8 CHAPTER 1. INTRODUCTION

However, grammars are nondeterministic in nature. Thus,
even if we try to avoid nondeterministic automata, we
usually can’t escape having to deal with them.

We will investigate the following types of grammars (the
so-calledChomsky hierarchy) and the corresponding fam-
ilies of languages:

(1) Regular grammars (type 3-languages).

(2) Context-free grammars (type 2-languages).

(3) The recursively enumerable languages or r.e. sets
(type 0-languages).

(4) If time permit, context-sensitive languages
(type 1-languages).

Miracle: The grammars of type (1), (2), (3), (4) corre-
spond exactly to the automata of the corresponding type!

1.1. GENERALITIES, MOTIVATIONS, PROBLEMS 9

Furthermore, there are algorithms for converting gram-
mars to the corresponding automata (and backward), al-
though some of these algorithms are not practical.

Building an automaton from a grammar is an important
practical problem in language processing. A lot is known
for the regular and the context-free grammars, but there
is still room for improvements and innovations!

There are other ways of defining families of languages, for
example

Inductive closures .

In this style of definition, a collection of basic (atomic)
languages is specified, some operations to combine lan-
guages are also specified, and the family of languages is
defined as the smallest one containing the given atomic
languages and closed under the operations.

10 CHAPTER 1. INTRODUCTION

Investigating closure properties (for example, union, in-
tersection) is a way to assess how “robust” (or complex)
a family of languages is.

Well, it is now time to be precise!

Chapter 2

Basics of Formal Language Theory

2.1 Review of Some Basic Math Notation and
Definitions

N,Z,Q,R,C.

The natural numbers ,

N = {0, 1, 2, . . .}.

The integers ,

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

The rationals ,

Q =

{
p

q
| p, q ∈ Z, q ̸= 0

}
.

The reals , R.

11

12 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

The complex numbers ,

C = {a + ib | a, b ∈ R} .

Given any set X , the power set of X is the set of all
subsets of X and is denoted 2X .

The notation
f : X → Y

denotes a function with domain X and range
(or codomain) Y .

graph(f) = {(x, f(x)} | x ∈ X} ⊆ X × Y

is the graph of f .

Im(f) = f(X) = {y ∈ Y | ∃x ∈ X, y = f(x)} ⊆ Y

is the image of f .

2.1. REVIEW OF SOME BASIC MATH NOTATION AND DEFINITIONS 13

More generally, if A ⊆ X , then

f(A) = {y ∈ Y | ∃x ∈ A, y = f(x)} ⊆ Y

is the (direct) image of A.

If B ⊆ Y , then

f−1(B) = {x ∈ X | f(x) ∈ B} ⊆ X

is the inverse image (or pullback) of B.

f−1(B) is a set; it might be empty even if B ̸= ∅.

14 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Given two functions f : X → Y and g : Y → Z, the
function g ◦ f : X → Z given by

(g ◦ f)(x) = g(f(x)) for all x ∈ X

is the composition of f and g.

The function idX : X → X given by

idX(x) = x for all x ∈ X

is the identity function (of X).

A function f : X → Y is injective (old terminology one-
to-one) if for all x1, x2 ∈ X ,

if f(x1) = f(x2), then x1 = x2;

equivalently if x1 ̸= x2, then f(x1) ̸= f(x2).

2.1. REVIEW OF SOME BASIC MATH NOTATION AND DEFINITIONS 15

Fact: If X ̸= ∅ (and so Y ̸= ∅), a function f : X → Y is
injective iff there is a function r : Y → X (a left inverse)
such that

r ◦ f = idX.

Note: r is surjective.

A function f : X → Y is surjective (old terminology
onto) if for all y ∈ Y , there is some x ∈ X such that
y = f(x), iff

f(X) = Y.

Fact: If X ̸= ∅ (and so Y ̸= ∅), a function f : X → Y
is surjective iff there is a function s : Y → X (a right
inverse or section) such that

f ◦ s = idY .

Note: s is injective.

16 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

A function f : X → Y is bijective if it is injective and
surjective.

Fact: If X ̸= ∅ (and so Y ̸= ∅), a function f : X → Y
is bijective if there is a function f−1 : Y → X which is a
left and a right inverse, that is

f−1 ◦ f = idX, f ◦ f−1 = idY .

The function f−1 is unique and called the inverse of f .
The function f is said to be invertible.

2.1. REVIEW OF SOME BASIC MATH NOTATION AND DEFINITIONS 17

A binary relation R between two sets X and Y is a
subset

R ⊆ X × Y = {(x, y) | x ∈ X, y ∈ Y }.

dom(R) = {x ∈ X | ∃y ∈ Y, (x, y) ∈ R} ⊆ X

is the domain of R.

range(R) = {y ∈ Y | ∃x ∈ X, (x, y) ∈ R} ⊆ Y

is the range of R.

We also write xRy instead of (x, y) ∈ R.

18 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Given two relations R ⊆ X × Y and S ⊆ Y × Z, their
composition R ◦ S ⊆ X × Z is given by

R◦S = {(x, z) | ∃y ∈ Y, (x, y) ∈ R and (y, z) ∈ S}.

! Note that if R and S are the graphs of two functions
f and g, then R ◦ S is the graph of g ◦ f .

IX = {(x, x) | x ∈ X}

is the identity relation on X .

Given R ⊆ X × Y , the converse R−1 ⊆ Y ×X of R is
given by

R−1 = {(x, y) ∈ Y ×X | (y, x) ∈ R}.

A relation R ⊆ X×X is transitive if for all x, y, z ∈ X ,
if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

A relation R ⊆ X ×X is transitive iff R ◦R ⊆ R.

2.1. REVIEW OF SOME BASIC MATH NOTATION AND DEFINITIONS 19

A relation R ⊆ X × X is reflexive if (x, x) ∈ R for all
x ∈ X

A relation R ⊆ X ×X is reflexive iff IX ⊆ R.

A relation R ⊆ X ×X is symmetric if for all x, y ∈ X ,
if (x, y) ∈ R, then (y, x) ∈ R

A relation R ⊆ X ×X is symmetric iff R−1 ⊆ R.

Given R ⊆ X ×X (a relation on X), define Rn by

R0 = IX
Rn+1 = R ◦Rn.

The transtive closure R+ of R is given by

R+ =
⋃

n≥1

Rn.

Fact. R+ is the smallest transitive relation containing
R.

20 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

The reflexive and transitive closure R∗ of R is given by

R∗ =
⋃

n≥0

Rn = R+ ∪ IX.

Fact. R∗ is the smallest transitive and reflexive relation
containing R.

A relation R ⊆ X ×X is an equivalence relation if it is
reflexive, symmetric, and transitive.

Fact. The smallest equivalence relation containing a re-
lation R ⊆ X ×X is given by

(R ∪R−1)∗.

2.1. REVIEW OF SOME BASIC MATH NOTATION AND DEFINITIONS 21

A relation R ⊆ X ×X is antisymmetric if for all x, y ∈
X , if (x, y) ∈ R and (y, x) ∈ R, then x = y.

A relation R ⊆ X×X is a partial order if it is reflexive,
transitive, and antisymmetic.

A partial order R ⊆ X × X is a total order if for all
x, y ∈ X , either (x, y) ∈ R or (y, x) ∈ R.

22 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

2.2 Alphabets, Strings, Languages

Our view of languages is that a language is a set of
strings.

In turn, a string is a finite sequence of letters from some
alphabet. These concepts are defined rigorously as fol-
lows.

Definition 2.1. An alphabet Σ is any finite set.

We often write Σ = {a1, . . . , ak}. The ai are called the
symbols of the alphabet.

Examples :

Σ = {a}

Σ = {a, b, c}

Σ = {0, 1}

Σ = {α, β, γ, δ, ϵ,λ,ϕ,ψ,ω, µ, ν, ρ,σ, η, ξ, ζ}

2.2. ALPHABETS, STRINGS, LANGUAGES 23

A string is a finite sequence of symbols. Technically,
it is convenient to define strings as functions. For any
integer n ≥ 1, let

[n] = {1, 2, . . . , n},

and for n = 0, let
[0] = ∅.

Definition 2.2. Given an alphabet Σ, a string over Σ
(or simply a string) of length n is any function

u : [n]→ Σ.

The integer n is the length of the string u, and it is
denoted as |u|.

When n = 0, the special string u : [0]→ Σ of length 0 is
called the empty string, or null string , and is denoted
as ϵ.

24 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Given a string u : [n] → Σ of length n ≥ 1, u(i) is the
i-th letter in the string u. For simplicity of notation,
we write ui instead of u(i), and we denote the string
u = u(1)u(2) · · · u(n) as

u = u1u2 · · ·un,

with each ui ∈ Σ.

For example, if Σ = {a, b} and u : [3] → Σ is defined
such that u(1) = a, u(2) = b, and u(3) = a, we write

u = aba.

Other examples of strings are

work, fun, gabuzomeuh

Strings of length 1 are functions u : [1]→ Σ simply pick-
ing some element u(1) = ai in Σ.

Thus, we will identify every symbol ai ∈ Σ with the
corresponding string of length 1.

2.2. ALPHABETS, STRINGS, LANGUAGES 25

The set of all strings over an alphabet Σ, including the
empty string, is denoted as Σ∗.

Observe that when Σ = ∅, then

∅∗ = {ϵ}.

When Σ ̸= ∅, the set Σ∗ is countably infinite. Later on,
we will see ways of ordering and enumerating strings.

Strings can be juxtaposed, or concatenated.

Definition 2.3. Given an alphabet Σ, given any two
strings u : [m] → Σ and v : [n] → Σ, the concatenation
u · v (also written uv) of u and v is the string
uv : [m + n]→ Σ, defined such that

uv(i) =

{
u(i) if 1 ≤ i ≤ m,
v(i−m) if m + 1 ≤ i ≤ m + n.

In particular, uϵ = ϵu = u. Observe that

|uv| = |u| + |v|.

26 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

For example, if u = ga, and v = buzo, then

uv = gabuzo

It is immediately verified that

u(vw) = (uv)w.

Thus, concatenation is a binary operation on Σ∗ which is
associative and has ϵ as an identity.

Note that generally, uv ̸= vu, for example for u = a and
v = b.

Given a string u ∈ Σ∗ and n ≥ 0, we define un recursively
as follows:

u0 = ϵ

un+1 = unu (n ≥ 0).

2.2. ALPHABETS, STRINGS, LANGUAGES 27

Clearly, u1 = u, and it is an easy exercise to show that

unu = uun, for all n ≥ 0.

For the induction step, we have

un+1u = (unu)u by definition of un+1

= (uun)u by the induction hypothesis

= u(unu) by associativity

= uun+1 by definition of un+1.

28 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Definition 2.4. Given an alphabet Σ, given any two
strings u, v ∈ Σ∗ we define the following notions as fol-
lows:

u is a prefix of v iff there is some y ∈ Σ∗ such that

v = uy.

u is a suffix of v iff there is some x ∈ Σ∗ such that

v = xu.

u is a substring of v iff there are some x, y ∈ Σ∗ such
that

v = xuy.

We say that u is a proper prefix (suffix, substring) of
v iff u is a prefix (suffix, substring) of v and u ̸= v.

2.2. ALPHABETS, STRINGS, LANGUAGES 29

For example, ga is a prefix of gabuzo,

zo is a suffix of gabuzo and

buz is a substring of gabuzo.

Recall that a partial ordering ≤ on a set S is a binary
relation ≤ ⊆ S × S which is reflexive, transitive, and
antisymmetric.

The concepts of prefix, suffix, and substring, define binary
relations on Σ∗ in the obvious way. It can be shown that
these relations are partial orderings.

Another important ordering on strings is the lexicographic
(or dictionary) ordering.

30 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Definition 2.5. Given an alphabet Σ = {a1, . . . , ak}
assumed totally ordered such that a1 < a2 < · · · < ak,
given any two strings u, v ∈ Σ∗, we define the lexico-
graphic ordering ≼ as follows:

u ≼ v

⎧
⎨

⎩

(1) if v = uy, for some y ∈ Σ∗, or
(2) if u = xaiy, v = xajz, ai < aj,
with ai, aj ∈ Σ, and for some x, y, z ∈ Σ∗.

Note that cases (1) and (2) are mutually exclusive. In
case (1) u is a prefix of v. In case (2) v ̸≼ u and u ̸= v.

For example

ab ≼ b, gallhager ≼ gallier.

It is fairly tedious to prove that the lexicographic ordering
is in fact a partial ordering.

In fact, it is a total ordering , which means that for any
two strings u, v ∈ Σ∗, either u ≼ v, or v ≼ u.

2.2. ALPHABETS, STRINGS, LANGUAGES 31

The reversal wR of a string w is defined inductively as
follows:

ϵR = ϵ,

(ua)R = auR,

where a ∈ Σ and u ∈ Σ∗.

For example
reillag = gallierR.

By setting u = ϵ in (ua)R = auR and using the fact that
ϵR = ϵ, we obtain aR = a for all a ∈ Σ.

It can be shown that

(uv)R = vRuR.

Thus,
(u1 . . . un)

R = uRn . . . u
R
1 ,

and when ui ∈ Σ, we have

(u1 . . . un)
R = un . . . u1.

32 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

We can now define languages.

Definition 2.6. Given an alphabet Σ, a language over
Σ (or simply a language) is any subset L of Σ∗.

If Σ ̸= ∅, there are uncountably many languages.

2.2. ALPHABETS, STRINGS, LANGUAGES 33

A Quick Review of Finite, Infinite,
Countable, and Uncountable Sets

For details and proofs, see Discrete Mathematics, by
Gallier.

Let N = {0, 1, 2, . . .} be the set of natural numbers.

Recall that a set X is finite if there is some natural
number n ∈ N and a bijection between X and the set
[n] = {1, 2, . . . , n}. (When n = 0, X = ∅, the empty
set.)

The number n is uniquely determined. It is called the
cardinality (or size) of X and is denoted by |X|.

A set is infinite iff it is not finite.

34 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Recall that any injection or surjection of a finite set to
itself is in fact a bijection.

The above fails for infinite sets.

The pigeonhole principle asserts that there is no bijec-
tion between a finite set X and any proper subset Y
of X .

Consequence: If we think of X as a set of n pigeons
and if there are only m < n boxes (corresponding to the
elements of Y), then at least two of the pigeons must
share the same box .

As a consequence of the pigeonhole principle, a set X is
infinite iff it is in bijection with a proper subset of itself.

For example, we have a bijection n /→ 2n between N and
the set 2N of even natural numbers, a proper subset of
N, so N is infinite.

2.2. ALPHABETS, STRINGS, LANGUAGES 35

Definition 2.7. A set X is countable (or denumer-
able) if there is an injection from X into N.

If X is not the empty set, then X is countable iff there is
a surjection from N onto X .

Fact. It can be shown that a set X is countable if either
it is finite or if it is in bijection with N (in which case it
is infinite).

We will see later that N × N is countable. As a conse-
quence, the set Q of rational numbers is countable.

A set is uncountable if it is not countable.

For example, R (the set of real numbers) is uncountable.

Similarly

(0, 1) = {x ∈ R | 0 < x < 1}

is uncountable. However, there is a bijection between
(0, 1) and R (find one!)

36 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

The set 2N of all subsets of N is uncountable. This is a
special case of Cantor’s theorem discussed below.

Suppose |Σ| = k with Σ = {a1, . . . , ak}.

There are kn strings of length n and (kn+1 − 1)/(k − 1)
strings of length at most n over Σ; when k = 1, the
second formula should be replaced by n + 1.

If Σ ̸= ∅, then the set Σ∗ of all strings over Σ is infinite
and countable, as we now show.

If k = 1 write a = a1, and then

{a}∗ = {ϵ, a, aa, aaa, . . . , an, . . .}.

We have the bijection n /→ an from N to {a}∗.

2.2. ALPHABETS, STRINGS, LANGUAGES 37

If k ≥ 2, then we can think of the string

u = ai1 · · · ain

as a representation of the integer ν(u) in base k shifted
by (kn − 1)/(k − 1), with

ν(u) = i1k
n−1 + i2k

n−2 + · · · + in−1k + in

=
kn − 1

k − 1
+ (i1 − 1)kn−1 + · · · + (in−1 − 1)k + in − 1.

(and with ν(ϵ) = 0), where 1 ≤ ij ≤ k for j = 1, . . . , n.

We leave it as an exercise to show that ν : Σ∗ → N is a
bijection.

In fact, ν corresponds to the enumeration of Σ∗ where u
precedes v if |u| < |v|, and u precedes v in the lexico-
graphic ordering if |u| = |v|.

38 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

For example, if k = 2 and if we write Σ = {a, b}, then
the enumeration begins with

ϵ,

0

a, b,

1, 2,

aa, ab, ba, bb,

3, 4, 5, 6,

aaa, aab, aba, abb, baa, bab, bba, bbb

7, 8, 9, 10, 11, 12, 13, 14

To get the next row, concatenate a on the left, and then
concatenate b on the left.

ν(bab) = 2 · 22 + 1 · 21 + 2 = 8 + 2 + 2 = 12.

It works!

On the other hand, if Σ ̸= ∅, the set 2Σ
∗
of all subsets of

Σ∗ (all languages) is uncountable.

2.2. ALPHABETS, STRINGS, LANGUAGES 39

Indeed, we can show that there is no surjection from N

onto 2Σ
∗
.

First, we will show that there is no surjection from Σ∗

onto 2Σ
∗
. This is an instance of Cantor’s Theorem.

We claim that if there is no surjection from Σ∗ onto 2Σ
∗
,

then there is no surjection from N onto 2Σ
∗
either.

Proof. Assume by contradiction that there is a surjection
g : N→ 2Σ

∗
.

But, if Σ ̸= ∅, then Σ∗ is infinite and countable, thus we
have the bijection ν : Σ∗ → N. Then the composition

Σ∗ ν !! N
g

!! 2Σ
∗

is a surjection, because the bijection ν is a surjection, g
is a surjection, and the composition of surjections is a
surjection, contradicting the hypothesis that there is no
surjection from Σ∗ onto 2Σ

∗
.

40 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

We use a diagonalization argument to prove Cantor’s
Theorem .

Theorem 2.1. (Cantor, 1873) For every set X, there
is no surjection from X onto 2X.

Proof. Assume there is a surjection h : X → 2X , and
consider the set

D = {x ∈ X | x /∈ h(x)} ∈ 2X.

By definition, for any x ∈ X we have x ∈ D iff x /∈ h(x).
Since h is surjective, there is some y ∈ X such that
h(y) = D. Then, by definition of D and since D = h(y),
we have

y ∈ D iff y /∈ h(y) = D,

a contradiction. Therefore, h is not surjective.

Applying Theorem 2.1 to the case where X = Σ∗, we
deduce that there is no surjection from Σ∗ onto 2Σ

∗
.

Therefore, if Σ ̸= ∅, then 2Σ
∗
is uncountable.

2.2. ALPHABETS, STRINGS, LANGUAGES 41

Applying Theorem 2.1 to the case where X = N, we see
that there is no surjection from N onto 2N. This shows
that 2N is uncountable, as we claimed earlier.

For any set X , by mapping x ∈ X to {x} ∈ 2X , we
obtain an injection of X into 2X . However, Cantor’s
theorem implies that there is no injection of 2X into X .

Intuitively, 2X is strictly larger than X .

Since 2Σ
∗
is uncountable.(if Σ ̸= ∅), we will try to single

out countable “tractable” families of languages.

We will begin with the family of regular languages , and
then proceed to the context-free languages .

We now turn to operations on languages.

42 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

2.3 Operations on Languages

A way of building more complex languages from simpler
ones is to combine them using various operations. First,
we review the set-theoretic operations of union, intersec-
tion, and complementation.

Given some alphabet Σ, for any two languages L1, L2 over
Σ, the union L1 ∪ L2 of L1 and L2 is the language

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}.

The intersection L1 ∩ L2 of L1 and L2 is the language

L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2}.

The difference L1 − L2 of L1 and L2 is the language

L1 − L2 = {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.

The difference is also called the relative complement .

2.3. OPERATIONS ON LANGUAGES 43

A special case of the difference is obtained when L1 = Σ∗,
in which case we define the complement L of a language
L as

L = {w ∈ Σ∗ | w /∈ L}.

The above operations do not use the structure of strings.
The following operations use concatenation.

Definition 2.8. Given an alphabet Σ, for any two lan-
guages L1, L2 over Σ, the concatenation L1L2 of L1 and
L2 is the language

L1L2 = {w ∈ Σ∗ | ∃u ∈ L1, ∃v ∈ L2, w = uv}.

For any language L, we define Ln as follows:

L0 = {ϵ},

Ln+1 = LnL (n ≥ 0).

By setting n = 0 in the above equation we get L1 = L.

44 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

The following properties are easily verified:

L∅ = ∅,
∅L = ∅,

L{ϵ} = L,

{ϵ}L = L,

(L1 ∪ {ϵ})L2 = L1L2 ∪ L2,

L1(L2 ∪ {ϵ}) = L1L2 ∪ L1,

LnL = LLn.

In general, L1L2 ̸= L2L1.

So far, the operations that we have introduced, except
complementation (since L = Σ∗−L is infinite if L is finite
and Σ is nonempty), preserve the finiteness of languages.
This is not the case for the next two operations.

2.3. OPERATIONS ON LANGUAGES 45

Definition 2.9. Given an alphabet Σ, for any language
L over Σ, the Kleene ∗-closure L∗ of L is the language

L∗ =
⋃

n≥0

Ln.

The Kleene +-closure L+ of L is the language

L+ =
⋃

n≥1

Ln.

Thus, L∗ is the infinite union

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . ∪ Ln ∪ . . . ,

and L+ is the infinite union

L+ = L1 ∪ L2 ∪ . . . ∪ Ln ∪

Since L1 = L, both L∗ and L+ contain L.

46 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

In fact,

L+ = {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · · ∃un ∈ L, w = u1 · · · un},

and since L0 = {ϵ},

L∗ = {ϵ} ∪ {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · ·∃un ∈ L, w = u1 · · ·un}.

Thus, the language L∗ always contains ϵ, and we have

L∗ = L+ ∪ {ϵ}.

2.3. OPERATIONS ON LANGUAGES 47

However, if ϵ /∈ L, then ϵ /∈ L+. The following is easily
shown:

∅∗ = {ϵ},
L+ = L∗L,

L∗∗ = L∗,

L∗L∗ = L∗.

The Kleene closures have many other interesting proper-
ties.

Homomorphisms are also very useful.

Given two alphabets Σ,∆, a homomorphism
h : Σ∗ → ∆∗ between Σ∗ and ∆∗ is a function
h : Σ∗ → ∆∗ such that

h(uv) = h(u)h(v) for all u, v ∈ Σ∗.

48 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Letting u = v = ϵ, we get

h(ϵ) = h(ϵ)h(ϵ),

which implies that (why?)

h(ϵ) = ϵ.

If Σ = {a1, . . . , ak}, it is easily seen that h is completely
determined by h(a1), . . . , h(ak) (why?)

Example: Σ = {a, b, c}, ∆ = {0, 1}, and

h(a) = 01, h(b) = 011, h(c) = 0111.

For example

h(abbc) = 010110110111.

2.3. OPERATIONS ON LANGUAGES 49

Given any language L1 ⊆ Σ∗, we define the image h(L1)
of L1 as

h(L1) = {h(u) ∈ ∆∗ | u ∈ L1}.

Given any language L2 ⊆ ∆∗, we define the
inverse image h−1(L2) of L2 as

h−1(L2) = {u ∈ Σ∗ | h(u) ∈ L2}.

We now turn to the first formalism for defining languages,
Deterministic Finite Automata (DFA’s)

50 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

