
CIS 320: Algorithms November 3, 2021

Lecture 17
Lecturer: Aaron Roth Scribe: Aaron Roth

Linear Programming

One of the most powerful optimization paradigms that have worst-case efficient solvers are so-called
“Linear Programs”.

A linear program is defined by a set of d variables to optimize over, a linear function of those variables
to optimize, and constraints on how we can set the variables, specified as linear inequalities.

Definition 1 A linear program is an optimization problem defined over n non-negative decision variables
x1, . . . , xn ≥ 0, a linear objective function, and d linear constraints. It takes the form:

Maximize

n∑
i=1

cixi

such that for each constraint j ∈ [d] :
n∑

i=1

ai,jxi ≤ bj

We start by observing that linear programs are somewhat more general than they appear at first
glance. For example, because the constants ai.j , bj can be negative, they can also encode inequality
constraints in the other direction: If we want to express the inequality

∑n
i=1 ai,jxi ≥ bj , we can write

it as
∑n

i=1−ai,jxi ≤ −bj instead. Similarly, if we want to minimize some objective rather than maxi-
mize it, we can express that by multiplying the coefficients ci by −1. Finally, we can express equality
constraints as pairs of inequality constraints:

∑n
i=1 ai,j = bj can be represented by two constraints,∑n

i=1 ai,j ≤ bj and
∑n

i=1 ai,j ≥ bj
Lots of things can be represented as linear programs. Classically, linear programs were used to

express production problems. For example:

A lumber company can produce either pallets or high quality lumber. It cannot produce
more than 200 units (thousand board feet) of lumber per day, which maxes out usage of
their kiln, and it cannot produce more than 600 pallets per day. Its main saw can process at
most 400 logs per day. 1 unit of lumber requires 1.4 logs, and one pallet requires 0.25 logs.
High quality logs used for lumber cost $200 per log, and low quality logs used for pallets cost
$4 per log. Processing lumber costs $200 per unit, and processing pallets costs $5. A unit
of lumber sells for $490 per unit, and a pallet sells for $9. How many pallets and units of
lumber should the lumber company produce?

We can directly represent this as a linear program Say that xL represents the units of lumber to produce,
xP represents the number of pallets, yH represents the number of high quality logs purchased, and yL
represents the number of low quality logs. Then the problem is to solve:

Maximize 290 · xL + 4 · xP − 200yH − 4 · yL

such that:
xL ≤ 200 xP ≤ 600 1.4 · xL ≤ yH 0.25xP ≤ yL yL + yH ≤ 400

But observe that we can also write the max-flow problem as a linear program. Suppose we have a
flow network C = (V,E) with costs ce (recall without loss of generality we assume there are no incoming
edges to e and no outgoing edges from t). The max flow problem can be expressed as:

Maximize
∑

e out of s

f(e)

17-1

such that:

For every e ∈ E : f(e) ≤ ce and for every v 6∈ {s, t} :
∑

e into v

f(e) =
∑

e out of v

f(e)

We could also write down linear programs for the bipartite matching, min-cut, minimum spanning tree,
and other problems we’ve studied in this course (although sometimes some cleverness would be needed
to argue that they have integer optimal solutions).

It turns out that we can solve linear programs efficiently and in time polynomial in the number of
variables and constraints! The story is a little complicated — some of the most efficient algorithms
in practice (Simplex) are not polynomial time in the worst case, and some of the polynomial time
algorithms (Ellipsoid) are not efficient in practice. In this lecture, we’ll show how to use the polynomial
weights algorithm we derived last lecture to give approximate solutions to linear programs. A benefit of
this approach is that we never need to enumerate all of the constraints, we only need to find violated
constraints when they exist. So this lets us efficiently approximate the solutions to linear programs
with exponentially many constraints, so long as we can efficiently identify violated constraints given a
candidate solution.

To do so, we’ll first convert a linear program into a linear feasibility problem, which is just a linear
program without the objective

Definition 2 A linear feasibility problem is defined over n non-negative decision variables x1, . . . , xn ≥ 0
and d linear constraints. It is the problem of finding values for the xi such that for each constraint j ∈ [d]:

n∑
i=1

ai,jxi ≤ bj

We first observe that if a linear program has a solution x with optimal objective value OPT, then
we can write it as a linear feasibility problem simply by adding the constraint that the objective take
its optimal value:

n∑
i=1

−cixi ≤ −OPT

Of course we don’t know OPT, but if we had the ability to solve linear feasibility problems, then we
could find it via binary search. So from here on out, we’ll focus on solving linear feasibility problems.

First let us recall the final guarantee we derived last lecture for using the polynomial weights algorithm
for online linear optimization:

Theorem 3 For any sequence of losses `t ∈ [−R2/2, R2/2]N , the polynomial weights algorithm can be
used to play vectors wt ∈ BN (R1) and obtain:

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈BN (R1)

1

T

T∑
t=1

〈w∗, `t〉+ 2R1R2

√
ln(N)

T

Our goal is to leverage this theorem to solve linear programs. Our plan will be to run the polynomial
weights algorithm, which maintains a vector wt that we will treat as a candidate solution x to our
linear feasibility problem. At every round, we will check whether it (approximately) satisfies all of the
constraints. If it does, we’re done, and we’ll return the solution x = wt. Otherwise, we’ll run the
polynomial weights algorithm for another round, by feeding it a loss vector `t+1 defined by one of the
constraints that is violated. The algorithm is as follows:

17-2

Algorithm 1 Solve({a, b}dj=1, R1, R2)

Initialize the polynomial weights algorithm, parameterized to produce vectors w ∈ Bd(R1) and
receive losses in [−R2/2, R2/2].
Let t = 1, and w1 ∈ Rn be the vector representing the state of the PW algorithm.
while There exists a constraint jt such that

∑n
i=1 ai,jtw

t
i ≥ bj + α do

Run the PW algorithm for another iterate using loss function `t ∈ Rn defined so that `ti = ai,jt .
Let t← t+ 1 and wt be the updated state of the PW algorithm.

end while
Output x = wt.

Note that we need to pass to this algorithm an upper bound R1 on the scale of a feasible solution,
and an upper bound R2 on the quantities ai,j , but we can do this — we’ll quickly work out how to do it
for the max flow problem at the end. It will not exactly solve feasibility problems, but rather will return
α-approximate solutions:

Definition 4 Given a linear feasibility problem {a, b}dj=1, x is an α-feasible solution if for all constraints
j, we have:

n∑
i=1

xiai,j ≤ bj + α

The analysis turns out to be very direct and simple (which is to say, we already did most of the work
when we analyzed the polynomial weights algorithm):

Theorem 5 Let {a, b}dj=1 be a linear feasibility problem that has a feasible solution x∗ ∈ Bn(R1), and

such that max |ai,j | ≤ R2/2. Then Solve({a, b}dj=1, R1, R2) returns an α-feasible solution after at most

T ≤ 4R2
1R

2
2 ln(n)

α2

many iterations.

Proof First, observe that by construction, if the algorithm returns a solution x = wt for some t, it
is an α-feasible solution, so it only remains to argue that the algorithm halts and returns something
after at most T iterations. By assumption, there exists x∗ ∈ Bn(R1) such that for every constraint
j,

∑n
i=1 x

∗
i ai,j ≤ bj . We will consider the polynomial weights algorithm regret to x∗i and derive a

contradiction if the algorithm has not returned a solution after T iterations.
By construction, the loss function `t is defined so that at every round, `t = ajt for some constraint

jt. On the one hand, we know that
∑n

i=1 x
∗
i `

t
i ≤ bjt by the feasibility of x∗. On the other hand, we

know that by construction,
∑n

i=1 w
t
i`

t
i ≥ bjt + α by definition of the algorithm. Hence the regret of the

polynomial weights algorithm is at least:

1

T

T∑
t=1

〈wt, `t〉 − 1

T

T∑
t=1

〈x∗, `t〉 ≥ 1

T

T∑
t=1

(bjt + α− bjt) ≥ α

On the other hand, the regret bound of the polynomial weights algorithm implies:

α ≤ 1

T

T∑
t=1

〈wt, `t〉 − 1

T

T∑
t=1

〈x∗, `t〉 ≤ 2R1R2

√
ln(n)

T

Hence it must be that:

2R1R2

√
ln(n)

T
≥ α

17-3

Solving for T gives the theorem.

Lets briefly return to the max-flow problem. How can we bound R1 the norm of a feasible solution?
We can upper bound this by observing that a feasible flow in the worst case saturates the capacity of
every single edge, and so we have R1 ≤ C ≡

∑
e∈E ce. Note that this is the same quantity C that we

used to bound the running time of the specialized algorithm we derived for max-flow. By inspection, we
have that maxi,j |ai.j | = 1, and so we can take R2 = 2.

17-4

