
CIS 320 Problem Set 3

Due: Wednesday 10/27/21

Welcome to Problem Set 3. A few notes before you begin.

• You may collaborate with up to 4 other people. All work must be written up individually. You may
collaborate, but you cannot copy. E.g. you can talk to your friends about ideas for a problem together,
but you cannot copy their solution and just change some words around. List your collaborators on
the top of your submission.

• Googling or looking up solutions in any way is not allowed.

• These problems are designed to challenge you. Start them early; if we’ve done our job well writing
them, you will have to chew on them for a while before finding the solutions, and that means you will
do best if you can sleep on your solutions rather than starting them the night before the due date.

• Cheating is not worth it! Your grade in this course does not define your worth as a person, and in 10
years you will not care about your bad grade on a homework assignment. But you will care if you are
caught plagiarizing: plagiarizing has serious consequences, including the potential of expulsion. It is
not worth it.

• You do not need to implement anything in code. In fact, please do not. Pseudocode or a clear English
explanation of your algorithm are both acceptable: in some cases pseudocode may be clearer than
plain English, and in others the plain English might be better.

• All analysis must be mathematically rigorous.

• Remember, we can’t evaluate your work if we can’t understand it. Communicating mathematical
and/or complex ideas is an important skill in computer science; treat your problem sets as practice.

• Have fun!!

1



Problem 1 (Billywig Woe). Your dorm has become infested with Billywigs! Several of them have nested
in holes along a corridor that is n feet long. You have Billywig traps, but they are very expensive, so you
don’t want to use more of them than you need to. A Billywig trap will catch any Billywig that has nested
within 5 feet of it, in either direction. Give a linear time algorithm to place the Billywig traps that uses as
few traps as possible. You can assume that the hallway is an array of length n, with each entry of the array
corresponding to a 1 foot segment of hallway. An array element is set to 1 if a Billywig has nested in that
segment, and is set to 0 otherwise. You need to choose the minimal number of array elements in which to
set the traps so that every Billywig is within 5 entries of some trap.

Problem 2 (A Poet (But You Don’t Know It)). You and your friend Steve run a successful business writing
best-selling books of new age poetry. Here is how it works: You stay awake for 72 hours until you start
hallucinating, at which point you generate a sequence of n words seemingly at random. You call this your
“wordstream”. Then you figure out how to chop up your wordstream into subsequences that will be your
final collection of poems, which you will publish and earn royalties from. For example, if you decide to chop
your wordstream at positions t1 and t2, you will end up with a collection of 3 poems: the sequence of words
from 1 to t1, the sequence from t1 to t2, and the sequence from t2 to n. You never know ahead of time how
many poems you will chop up your wordstream into. In fact, you don’t really have an ear for poetry at all.
This is where Steve comes in. After he stays up for 72 hours, he is able to hear an arbitrary sequence s of
words, and then report back the poetic quality pqs of that sequence. Querying Steve on a single string s
takes constant time independently of the length of the string, since Steve experiences time strangely after
staying up for so long. Suppose you have partitioned your wordstream into k poems si — then the value of
your collection of poetry is simply the sum of the poetic qualities of each of the poems:

∑k
i=1 pqsi . Given

a word-stream of length n, give as efficient an algorithm as you can for partitioning it into the collection of
poems si of maximum value.

Problem 3 (Fluffy Fashion). You have n Pokemon you care about. Why? Because each and every one of
them is fluffy. But you want even more fluffiness! You are a hairdresser and have an integer budget b ≥ 0
of creative energy. A Pokemon scholar tells you a secret. For each Pokemon i, if you invest ai ≥ 0 integer
units of creative energy into doing Pokemon i’s haircut then you get back ai + pi units of creative energy
(where pi ≥ 0 is integer) once the haircut is done! (Or, you can invest none and get no increase in creative
energy; also, note that you cannot do any Pokemon’s haircut more than once.) You must decide today, for
each Pokemon i, whether or not to give them a haircut; you may not exceed your budget b or postpone your
decision regarding any Pokemon until later. The unspent part of the energy stays with you, and tomorrow
you receive dividends on the Pokemon you chose, as specified above — so that your new energy level will
be some c ≥ b. Design an O(n ·

∑n
i=1 pi) algorithm that outputs the maximum amount c of creative energy

that you can guarantee yourself for tomorrow. Note: Why are we asking you for this runtime, instead of the
O(nb) runtime which (check it yourself) easily follows from what was covered in lecture? It is because you
believe that you have a super huge supply of creative energy to begin with and so runtime proportional to b
would be prohibitive; and at the same time, you suspect that each Pokemon’s net return on fluffiness pi is
pretty small, making the linear dependence on

∑
i pi rather desirable.

Problem 4 (Divide and ... Greedy). Let us have a fresh look at grade-school division. What do you do?
To divide a by b, you:

1. Consider b · 10k1 for the largest k1 such that b · 10k1 ≤ a. Then the lead digit of the answer is the
maximum 1 ≤ c1 ≤ 9 such that c1 · (b · 10k1) ≤ a.

2. Subtract off c1 · (b · 10k1) from a, and divide the remaining number by b recursively using Step 1, thus
determining the remaining digits of the answer.

Our use of the words “largest” and “maximum” in the description of Step 1 above should indicate to you that
this is a greedy algorithm! Why is this division algorithm so widely taught — surely it’s not just simple but
also optimal from some standpoint? We will now figure this out in even greater generality!

Part (a) Archie is battling a monster in her favorite computer game. The monster has health of a units
(a is a positive integer). Archie has a range of n weapons that deal the following amounts of damage:
1, p1, p1p2, . . . ,

∏n−1
i=1 pi, where p1, . . . , pn−1 are all positive integers greater than 1. When the monster has

2



health x and is attacked using weapon of damage amount y, the monster’s health becomes x − y. The
monster is defeated when the health is at 0. Weapons can be reused. The game rules are tricky: at no point
is Archie allowed to fire at the monster with a weapon that deals more damage than the monster’s current
health.

Archie wants to finish the game off as soon as she can, and follows a greedy strategy: At each step, she
selects a weapon with the maximum available firepower among all weapons that she can currently attack
the monster with. Prove that using this strategy, she defeats the monster with the least number of weapon
uses.

Part (b) Does Archie always defeat the monster in the optimal number of steps using this algorithm if
her weapons are allowed to have arbitrary distinct integer damage levels, with the only restriction being that
one of the weapons has damage level 1? If so, prove it. If not, give a counterexample (a specific health level
for the monster, a specific set of weapons and their damage levels, and a justification.)

Part (c) Show how to instantiate the grade-school division algorithm as a special case of part (a). (What
corresponds to the monster’s health? What corresponds to the weapons’ damage amounts?) Given this
instantiation, briefly state the sense in which grade-school division is optimal.

Problem 5 (More Marvelous Matchings?). Having learned about the greedy method, you are now eager
to apply it to earlier (not-so-greedy-looking) parts of this course to potentially come up with an original
algorithm. You recall the maximum unweighted bipartite matching problem: Given a bipartite graph G =
((L,R), E) with unit edge weights, one needs to find a matching of the largest possible cardinality.

You have come up with the following algorithm. Given any matching M , and a simple path P =
{e1, . . . , elen(P )} (recall that in a simple path, vertices and edges never repeat; here, e1, . . . , elen(P ) is the list
of edges along the path from start to end), we refer to P as M -nice if two conditions hold. First, the edges
on this path alternate between edges that are not in M and edges that are in M in the following precise
sense: e1 6∈M, e2 ∈M, e3 6∈M, . . . , elen(P )−1 ∈M, elen(P ) 6∈M . Note that a path satisfying this alternating
condition must have an odd number of edges. Second, the first and last vertex along the path P are both
unmatched in M .

Your algorithm is now simple to describe: Start with an empty matching M0 = ∅; and for i ≥ 0, while
there exists an Mi-nice path Pi = {ei1, . . . , eilen(Pi)

}, obtain the next matching Mi+1 by removing from it the
edges ei2, e

i
4, . . . , e

i
len(Pi)−1 and instead adding in the edges ei1, e

i
3, . . . , e

i
len(Pi)

. If there is no Mi-nice path,
output Mi as the answer and terminate.

1. Briefly state: Can you justify calling this algorithm greedy? That is, is there some sense in which each
step to brings us closer to optimality?

2. Either prove that this algorithm is correct (i.e. always returns a max-cardinality matching) or give a
counterexample.

3


