
CIS 341: COMPILERS
Lecture 3

Announcements
•  Project 0: Hellocaml!

–  is due tonight at 11:59:59pm.

•  Project 1: X86lite
–  Will be available soon… look for an announcement
–  Due: Thurs. January 31st
–  Pair-programming project: sign up on Piazza

Zdancewic	
 	
 	
 	
 	
 CIS	
 341:	
 Compilers	
 	
 	
 	
 	
 2	

X86LITE

The target architecture for CIS341

Zdancewic	
 	
 	
 	
 	
 CIS	
 341:	
 Compilers	
 	
 	
 	
 	
 3	

Intel’s X86 Architecture
•  1978: Intel introduces 8086
•  1982: 80186, 80286
•  1985: 80386
•  1989: 80486
•  1993: Pentium
•  1995: Pentium Pro
•  1997: Pentium II/III
•  2000: Pentium 4
•  2003: Pentium M, Intel Core
•  2006: Intel Core 2
•  2008: Intel Core i3/i5/i7
•  2011: SandyBridge / IvyBridge
•  2013: Haswell

•  AMD has a parallel line of processors

CIS	
 341:	
 Compilers	
 4	

Intel	
 Core	
 2	
 Duo	

X86 Evolution & Moore’s Law

CIS	
 341:	
 Compilers	
 5	

Tr
an

si
st

or
 C

ou
nt

 (l
og

 s
ca

le
)

10,000	

100,000	

1,000,000	

10,000,000	

100,000,000	

1,000,000,000	

10,000,000,000	

Intel Processor Transistor Count

Intel	
 Processor	
 Transistor	
 Count	

X86 vs. X86lite
•  X86 assembly is very complicated:

–  8-, 16-, 32-, 64-bit values + floating points, etc.
–  Intel 64 and IA 32 architectures have a huge number of functions
–  “CISC” complex instructions
–  Machine code: instructions range in size from 1 byte to 17 bytes
–  Lots of hold-over design decisions for backwards compatibility
–  Hard to understand, there is a large book about optimizations at just the

instruction-selection level

•  X86lite is a very simple subset of X86:
–  Only 32 bit signed integers (no floating point, no 16bit, no …)
–  Only about 20 instructions
–  Sufficient for implementing the entire OAT language

CIS	
 341:	
 Compilers	
 6	

X86 Schematic

Zdancewic	
 	
 	
 	
 	
 CIS	
 341:	
 Compilers	
 	
 	
 	
 	
 7	

Code	

Heap	

Stack	

La
rg
er
	
 A
dd

re
ss
es
	

0x00000000!

0xffffffff!

Memory	

EAX! EBX! ECX! EDX!

ESI! EDI! ESP! EBP!

Control	

	
 	
 	
 	
 	
 	
 	
 	
 	
 ALU	

OF!

SF!

ZF!

InstrucJon	

Decoder	

EIP!

Registers	

Flags	

Processor	

X86lite Machine State: Registers
•  Register File: 8 32-bit registers

–  EAX general purpose accumulator

–  EBX base register, pointer to data

–  ECX counter register for strings & loops

–  EDX data register for I/O

–  ESI pointer register, string source register

–  EDI pointer register, string destination register

–  EBP base pointer, points to the stack frame

–  ESP stack pointer, points to the top of the stack

•  EIP a “virtual” register, points to the current instruction
–  EIP is manipulated only indirectly via jumps and return.

CIS	
 341:	
 Compilers	
 8	

Simplest instruction: Mov
•  Mov DEST SRC copy SRC into DEST

•  Here, DEST and SRC are operands
•  DEST is treated as a location

–  A location can be a register or a memory address

•  SRC is treated as a value
–  A value is the contents of a register or memory address
–  A value can also be an immediate (constant) or a label

•  Mov EAX 4 move the immediate value 4 into EAX!
•  Mov EAX EBX move the contents of EBX into EAX!

CIS	
 341:	
 Compilers	
 9	

X86lite Arithmetic instructions
•  Neg DEST two’s complement negation
•  Add DEST SRC DEST ← DEST + SRC
•  Sub DEST SRC DEST ← DEST - SRC
•  Imul Reg SRC Reg ← Reg * SRC (truncated 64-bit mult.)

Examples:

Add EAX EBX // EAX ← EAX + EBX!
Sub ESP 4 // ESP ← ESP - 4!

•  Note: Reg (in Imul) must be a register, not a memory address

CIS	
 341:	
 Compilers	
 10	

X86lite Logic/Bit manipulation Operations
•  Not DEST logical negation
•  And DEST SRC DEST ← DEST && SRC
•  Or DEST SRC DEST ← DEST || SRC
•  Xor DEST SRC DEST ← DEST xor SRC

•  Sar DEST Amt DEST ← DEST >> amt (arithmetic shift right)
•  Shl DEST Amt DEST ← DEST << amt (arithmetic shift left)
•  Shr DEST Amt DEST ← DEST >>> amt (bitwise shift right)

CIS	
 341:	
 Compilers	
 11	

X86lite Operands
•  Operands are the values operated on by the assembly instructions

•  Imm 32-bit literal signed integer “immediate”

•  Lbl a “label” representing a machine address���
 the assembler/linker/loader resolve labels

•  Reg One of the 8 registers, the value of a register is���
 its contents

•  Ind [base:Reg][index:Reg,scale:int32][disp]���
 machine address (see next slide)

CIS	
 341:	
 Compilers	
 12	

X86 Addressing
•  There are three components of an indirect address

–  Base: a machine address stored in a register
–  Index * scale: a variable offset from the base
–  Disp: a constant offset (displacement) from the base

•  addr(ind) = Base + [Index * scale] + Disp
–  When used as a location, ind denotes the address addr(ind)
–  When used as a value, ind denotes Mem[addr(ind)], the contents���

of the memory address

•  Example: -4(ESP) denotes address: ESP – 4!
•  Example: (EAX, ECX, 4) denotes address: EAX + 4*ECX!
•  Example: -12(EAX, ECX, 4) denotes address: EAX + 4*ECX -12!

•  Note: Index cannot be ESP!
•  Note: For our purposes, scale will always be 4

CIS	
 341:	
 Compilers	
 13	

X86lite Memory Model
•  The X86lite memory consists of 232 bytes numbered 0x00000000

through 0xffffffff.
•  X86lite treats the memory as consisting of 32-bit (4-byte) words.
•  Therefore: legal X86lite memory addresses consist of 32-bit, word-

aligned pointers.
–  All memory addresses are evenly divisible by 4

•  Lea DEST Ind DEST ← addr(Ind) loads a pointer into DEST

•  By convention, there is a stack that grows from high addresses to low
addresses

•  The register ESP points to the top of the stack
–  Push SRC ESP ← ESP - 4; Mem[ESP] ← SRC

–  Pop DEST DEST ← Mem[ESP]; ESP ← ESP + 4!

CIS	
 341:	
 Compilers	
 14	

X86lite State: Condition Flags & Codes
•  X86 instructions set flags as a side effect
•  X86lite has only 3 flags:

–  OF: “overflow” set when the result is too big/small to fit in 32-bit reg.
–  SF: “sign” set to the sign or the result (0=positive, 1 = negative)

–  ZF: “zero” set when the result is 0

•  From these flags, we can define Condition Codes
–  To compare SRC1 and SRC2, compute SRC1 – SRC2 to set the flags
–  Eq equality holds when ZF = 1

–  NotEq inequality holds when ZF = 0
–  Slt signed less than holds when

•  ((SF=1 && OF=0) || (SF=0 && OF=1))

•  Equivalently: SF <> OF!
–  Sle signed less than or equal holds when (SF <> 0 || ZF)

–  Sgt signed greater than holds when not(SF <> 0 || ZF)
–  Sge signed gtr than or equal holds when not(SF = OF)

CIS	
 341:	
 Compilers	
 15	

Code Blocks & Labels
•  X86 assembly code is organized into labeled blocks:

•  Labels indicate code locations that can be jump targets (either through
conditional branch instructions or function calls).

•  Labels are translated away by the linker and loader – instructions live in
the heap in the “code segment”

•  An X86 program begins executing at a designated code label (usually
“main”).

CIS	
 341:	
 Compilers	
 16	

label1:!
! !<instruction>!
! !<instruction>!
! !…!
! !<instruction>!

label2:!
! !<instruction>!
! !<instruction>!
! !…!
! !<instruction>!

Conditional Instructions
•  Cmp SRC1 SRC2 Compute SRC1 - SRC2, set condition flags

•  Setb DEST CC DEST’s lower byte ← if CC then 1 else 0

•  J CC Lbl EIP ← if CC then Lbl else fallthrough

•  Example:

 Cmp EAX ECX Compare EAX to ECX ���
 J Eq __truelbl If EAX = ECX then jump to __truelbl ���

CIS	
 341:	
 Compilers	
 17	

Jumps, Call and Return
•  Jmp SRC EIP ← SRC Jump to location in SRC

•  Call SRC Push EIP; EIP ← SRC
–  Call a procedure: Push the program counter to the stack (decrementing

ESP) and then jump to the machine instruction at the address given by
SRC.

•  Ret Pop EIP!
–  Return from a procedure: Pop the current top of the stack into EIP

(incrementing ESP). This instruction effectively jumps to the address at
the top of the stack

CIS	
 341:	
 Compilers	
 18	

Notation
•  Different assemblers use different notation
•  This lecture has used one variant: Mov DEST SRC

–  It is close to the X86lite implementation in the course projects

•  Another common variant: mov SRC, DEST
–  Pronouce the comma as “into”
–  Write EAX as %eax!
–  Write immediate 4 as $4!

•  Note: “true x86” uses different instruction suffixes for different word sizes:
mov vs. movl!
–  All of our assembly uses the “l” suffix
–  Mov EAX -4(ECX) is displayed as movl -4(%ecx), %eax!

•  Similarly, “true x86” adds the condition codes as suffixes for the
instructions: Jeq for “Jump if Eq”

CIS	
 341:	
 Compilers	
 19	

IMPLEMENTING X86LITE

Zdancewic	
 	
 	
 	
 	
 CIS	
 341:	
 Compilers	
 	
 	
 	
 	
 20	

See files: x86.ml, x86.mli, cunit.ml, cunit.mli

PROGRAMMING IN X86LITE

Zdancewic	
 	
 	
 	
 	
 CIS	
 341:	
 Compilers	
 	
 	
 	
 	
 21	

22	

3 parts of the C memory model
•  The code & data (or "text") segment

–  contains compiled code, constant strings, etc.

•  The Heap
–  Stores dynamically allocated objects
–  Allocated via "malloc"
–  Deallocated via "free"
–  C runtime system

•  The Stack
–  Stores local variables
–  Stores the return address of a function

•  In practice, most languages use this���
model.

Code	

Heap	

Stack	

La
rg
er
	
 A
dd

re
ss
es
	

CIS	
 341:	
 Compilers	

Implementing Functions/Procedures

•  Consider the following
program:���

•  What do we need to
do to compile this?

•  Local variables…
•  Function arguments

passed in the call…
•  Control-flow: jump to

“square” return to
“f”…

CIS	
 341:	
 Compilers	
 23	

int square(int x) {!
 int z = x * x;!
 return z;!
}!

int f(int x1, int x2) {!
 int dx = x2 - x1;!
 return square(dx);!
} 	

Local/Temporary Variable Storage
•  Need space to store:

–  Global variables
–  Values passed as arguments to procedures
–  Local variables (either defined in the source program or introduced by the

compiler)

•  Processors provide two options
–  Registers: fast, small size (32 or 64 bits), very limited number
–  Memory: slow, very large amount of space (2 GB)

•  In practice on X86:
–  Registers are limited (and have restrictions)
–  Divide memory into regions including the stack and the heap

CIS	
 341:	
 Compilers	
 24	

Calling Conventions
•  Specify the locations (e.g. register or stack) of arguments passed to a

function
•  Designate registers either:

–  Caller Save – e.g. freely usable by the called code
–  Callee Save – e.g. must be restored by the called code

•  Protocol for deallocating stack-allocated arguments
–  Caller cleans up
–  Callee cleans up (makes variable arguments harder)

CIS	
 341:	
 Compilers	
 25	

cdecl calling conventions
•  “Standard” on X86 for many C-based operating systems (i.e. almost

all)
–  Still some wrinkles about return values (e.g. some compilers use EAX and
EDX to return small values)

–  This is evolving due to 64 bit (which allows for packing multiple values in
one register)

•  Arguments are passed on the stack in right-to-left order
•  Return value is passed in EAX!
•  Registers EAX, ECX, EDX are caller save
•  Other registers are callee save

–  Ignoring these conventions will cause havoc (bus errors or seg faults)

CIS	
 341:	
 Compilers	
 26	

Call Stacks: Example

•  Use a stack to keep
track of the return
addresses:
–  f calls g, g calls h!
–  h returns to g, g returns to
f!

•  Stack frame:
–  Functions arguments
–  Local variable storage
–  Return address
–  Link (or “frame”) pointer

CIS	
 341:	
 Compilers	
 27	

dx	

frame	
 ptr.	

f’s	
 ret.	
 addr.	

x1	

x2	

z	

frame	
 ptr.	

square’s	
 ret.	

x	

f’s	
 frame	

square’s	
 	

frame	

la
rg
er
	
 m

em
or
y	

ad
dr
es
se
s	

ESP	

Call Stacks: In general

•  Function call:���
 f(e1, e2, …, en):

•  Evaluate e1 to v1, e2 to v2,
… , en to vn!

•  Push vn to v1 onto the top
of the stack.

•  Use Call to jump to the
code for ‘f’, pushing the
return address onto the
stack.

•  Invariant: returned value
passed in EAX!

•  After call, the calling code
cleans up the pushed
arguments

CIS	
 341:	
 Compilers	
 28	

return	
 addr.	

v1	

v2	

…	

vn	

previous	

local	

variables	

ESP!

State	
 of	
 the	
 stack	
 	

just	
 aZer	
 the	
 Call	

	
 instrucJon:	

DEMO: HANDCODING X86LITE

Zdancewic	
 	
 	
 	
 	
 CIS	
 341:	
 Compilers	
 	
 	
 	
 	
 29	

See: handcoding.ml, runtime.c

Compiling, Linking, Running
•  To use hand-coded X86 in handcoded.ml:

1.  Compile handcoded.ml to either native or bytecode
2.  Run it, redirecting the output to some .s file, e.g.:���

./handcoded.native >> test.s
3.  Use gcc with the -m32 flag to compile & link with runtime.c:���

gcc -m32 -o test runtime.c test.s
4.  You should be able to run the resulting exectuable:���

./test

•  If you want to debug in gdb:
–  Call gcc with the –g flag too

CIS	
 341:	
 Compilers	
 30	

