Lecture 5

CIS 341: COMPILERS

Announcements

* Project 1: X86lite
— Available on the course web pages.
— Due: Thurs. January 31%

Zdancewic CIS 341: Compilers

Lexical analysis, tokens, regular expressions, automata

LEXING

Zdancewic CIS 341: Compilers

Compilation in a Nutshell

Source Code

(Character stream)
if (b == 0) a = 0;

Token stream:

if| (|bpl==10|)y lal=10]/;

Abstract Syntax Tree:

Intermediate

code:

/ _ Lis

if(# t5 = 0) then
12 else 13

_12:
td4 := 0
jump 13
13:
Assembly Code —
CMP ECX, O <€
SETBZ EAX

CIS 341: Compilers

Today: Lexical Analysis

Source Code

(Character stream)
if (b == 0) a = 0;

Token stream:

if| (|bpl==10|)y lal=10]/;

Abstract Syntax Tree:

Intermediate

code:

/ _ Lis

if(# t5 = 0) then
12 else 13

_12:
td4 := 0
jump 13
13:
Assembly Code —
CMP ECX, O <€
SETBZ EAX

CIS 341: Compilers

First Step: Lexical Analysis

* Change the character stream “1if (b == 0) a = 0;” into tokens:

if| (| bl =10) a| =1]2~0 ;
IF, LPAREN, IDENT(“b"”), EQEQ, INT(0), RPAREN,
IDENT(“a”), EQ, INT(0), SEMI

« Token: data type that represents indivisible “chunks” of text:

— ldentifiers: a yll elsex 100

— Keywords: if else while

— Integers: 2 200 =500 5L

— Floating point: 2.0 .02 1le5

— Symbols: + x 7 { } () ++ << >> >>>
— Strings: “x" “He said, \"Are you?\"”

— Comments: (* CIS341: Project 1 .. *)

« Often delimited by whitespace (" /, \t, etc.)

CIS 341: Compilers

How hard can it be?
handlex.ml

DEMO: HANDLEX

Zdancewic CIS 341: Compilers

Lexing By Hand

« How hard can it be?
— Tedious and painful!

* Problems:
— Precisely define tokens
— Matching tokens simultaneously
— Reading too much input (need look ahead)
— Error handling
— Hard to compose/interleave tokenizer code
— Hard to maintain

CIS 341: Compilers

Regular Expressions

« Regular expressions precisely describe sets of strings.

« A regular expression R has one of the following forms:

— €

_ lal

- R1 | Rz
- R1R2

— R*

Epsilon stands for the empty string

An ordinary character stands for itself

Alternatives, stands for choice of R, or R,
Concatenation, stands for R, followed by R,
Kleene star, stands for zero or more repetitions of R

e Useful extensions:

_ ufoo"
— R+
— R?

_ [lal_lzl]

Strings, equivalentto '"£''o''o
One or more repetitions of R, equivalent to RR*
Zero or one occurrences of R, equivalent to (& |R)
Oneofaorborcor... z, equivalentto (a|b]|..|z)

— [7'0'="9"1 Any character except 0 through 9

— R as x

CIS 341: Compilers

Name the string matched by R as x

Example Regular Expressions

* Recognize the keyword “if”: "if"
* Recognize a digit: ['0'-'9"]
* Recognize an integer literal: '-'2['0'-'9'1+
* Recognize an identifier:
(['a'-'2'1| ['A-"Z2']) (1091 || 'a'-"2'] [['A'-'2']) *

* In practice, it's useful to be able to name regular expressions:

let lowercase = ['a'-"'2']

let uppercase

I
—
-

|
N
—

let character = uppercase | lowercase

CIS 341: Compilers

10

How to Match?

« Consider the input string: ifx = 0

— Could lex as: i f or as:

x| =10 ifx | =10

« Regular expressions alone are ambiguous, need a rule for choosing
between the options above

* Most languages choose “longest match”
— So the 2 option above will be picked
— Note that only the first option is “correct” for parsing purposes

» Conflicts: arise due to two regular expressions with non-empty
Intersection

— Ties broken by giving some matches higher priority
— Example: keywords have priority over identifiers
— Usually specified by order the rules appear in the lex input file

CIS 341: Compilers 11

Lexer Generators

« Reads a list of regular expressions: R,,..,R, , one per token.

 Each token has an attached “action” A, (just a piece of code to run
when the regular expression is matched):

rule token = parse

'-'?2digit+ { Int (Int32.0f string (lexeme lexbuf)) }
"+ { PLUS }

|

|

| 'if' { IF }

| character (digit|character|' ')* { Ident (lexeme lexbuf) }
|

whitespace+ { token lexbuf }

Generates scanning code that:
1. Decides whether the input is of the form (R, |..|R,) *

2. Whenever the scanner matches a (longest) token, it runs the associated
action

CIS 341: Compilers 12

olex.mll

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers

Finite Automata

° Consider the regular eXpI‘eSSion: 1 [AT] romr

* An automaton (DFA) can be represented as:
— A transition table:

-—
0 ERROR

2 1
ERROR ERROR

— A graph:

CIS 341: Compilers

RE to Finite Automaton?

« Can we build a finite automaton for every regular expression?
— Yes! Recall CIS 262 for the complete theory...

« Strategy: consider every possible regular expression (by induction on
the structure of the regular expressions):

a
a
o : What about?
0 R [R,
R;R,

CIS 341: Compilers 15

Nondeterministic Finite Automata

A finite set of states, a start state, and accepting state(s)

* Transition arrows connecting states
— Labeled by input symbols
— Or ¢ (which does not consume input)

« Nondeterministic: two arrows leaving the same state may have the
same label

CIS 341: Compilers 16

RE to NFA?

« Converting regular expressions to NFAs is easy.
« Assume each NFA has one start state, unique accept state

CIS 341: Compilers

17

RE to NFA (cont’'d)

* Sums and Kleene star are easy with NFAs

R1|R2

R*

CIS 341: Compilers

18

DFA versus NFA

 DFA:

— Action of the automaton for each input is fully determined

— Automaton accepts if the input is consumed upon reaching an accepting
state

— Obvious table-based implementation

* NFA:

— Automaton potentially has a choice at every step

— Automaton accepts an input string if there exists a way to reach an
accepting state

— Less obvious how to implement efficiently

CIS 341: Compilers

19

NFA to DFA conversion (Intuition)

 Idea: Run all possible executions of the NFA “in parallel”
 Keep track of a set of possible states: “finite fingers”
« Consider: =?2[0-97+

* NFA representation:

* DFA representation:

CIS 341: Compilers 20

Summary of Lexer Generator Behavior

Take each regular expression R; and it’s action A,
Compute the NFA formed by (R; | R, | .. | R,)

— Remember the actions associated with the accepting states of the R,
Compute the DFA for this big NFA

— There may be multiple accept states (why?)

— A single accept state may correspond to one or more actions (why?)
Compute the minimal equivalent DFA

— There is a standard algorithm due to Myhill & Nerode
Produce the transition table
Implement longest match:

— Start from initial state

— Follow transitions, remember last accept state entered (if any)

— Accept input until no transition is possible (i.e. next state is “ERROR”)

— Perform the highest-priority action associated with the last accept state; if

no accept state there is a lexing error

CIS 341: Compilers

Lexer Generators in Practice

* Many existing implementations: lex, Flex, Jlex, ocamllex, ...

— For example ocamllex program

* see lexlex.mll, olex.mll, piglatin.mll on course website

* Error reporting:

— Associate line number/character position with tokens

— Use a rule to recognize ‘\n” and increment the line number

— The lexer generator itself usually provides character position info.
« Sometimes useful to treat comments specially

— Nested comments: keep track of nesting depth

 Lexer generators are usually designed to work closely with parser
generators...

CIS 341: Compilers 22

lexlex.mll, olex.mll, piglatin.mll

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers

23

