
CIS 341: COMPILERS
Lecture 11

Announcements

•  Project 3: Compiling Control Flow
–  Due: Monday, February 25th at 11:59pm

•  Midterm Exam:
–  Thursday, February 28th
–  In class
–  Examples on the web

Zdancewic CIS 341: Compilers 2

SCOPE AND CONTEXTS

Zdancewic CIS 341: Compilers 3

Variable Scoping
•  Consider the problem of determining whether a programmer-declared

variable is in scope.

•  See: Project 3 web pages for OAT’s scoping rules.

•  Issues:
–  Which variables are available at a given point in the program?
–  Shadowing – is it permissible to re-use the same identifier, or is it an error?

•  Solution:
–  Contexts

Zdancewic CIS 341: Compilers 4

Notation for Scope Checking
•  Contexts (using OCaml list notation):

G ::= [] | IDENT::G !

•  Syntax-directed “functions” that say how to compositionally check the
scope
–  One function for each syntactic category of the grammar.
–  Each function takes an input context (variables that are in scope)
–  May produce an output context (if new variables are introduced)

Zdancewic CIS 341: Compilers 5

G ⊢ exp

G ⊢ vdecl ⇒ G!

G ⊢ vdecl_list ⇒ G!

G ⊢ block ⇒ G!

G ⊢ stmt!

G ⊢ prog !

Generalizing ‘if’ & Inference Rules
•  We can read a judgment G ⊢ s as “The variables in statement s are

well-scoped in the context G.”
•  For any environment G, expression e, and statements s1, s2.���

 ���
 G ⊢ if (e) s1 else s2 ���

holds if G ⊢ e and G ⊢ s1 and G ⊢ s2 all hold.
•  More succinctly: we summarize these constraints as an inference rule:

•  This rule can be used for any substitution of the syntactic
metavariables G, e, s1 and s2.

CIS 341: Compilers 6

G	
 ⊢	
 e	
 	
 	
 	
 G	
 ⊢	
 s1	
 	
 	
 	
 	
 G	
 ⊢	
 s2	
 	

G	
 ⊢	
 if	
 (e)	
 s1	
 else	
 s2	
 	

Premises

Conclusion

Checking Derivations
•  A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

•  Leaves of the tree are axioms (i.e. rules with no premises)
–  Example: the INT rule is an axiom

•  Goal of the scope checker: verify that such a tree exists.
•  Example1: Find a tree for the following program using the inference

rules in oat0-defn.pdf:���

Example2: There is no tree for this ill-scoped program:

CIS 341: Compilers 7

int x1 = 0;!
int x2 = x1 + x1;!
x1 = x1 – x2;!
return(x1);!

int x2 = x1 + x1;!
return(x2);!

Why Inference Rules?
•  They are a compact, precise way of specifying language properties.

–  E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

•  Inference rules correspond closely to the recursive AST traversal that
implements them

•  Type checking (and type inference) is nothing more than attempting to
prove a different judgment (E ⊢ e : T) by searching backwards through
the rules.

•  Compiling in a context is nothing more than a collection of inference
rules specifying yet a different judgment (G ⊢ src ⇒ target)

•  Strong mathematical foundations
–  The “Curry-Howard correspondence”: Programming Language ~ Logic,���

Program ~ Proof, Type ~ Proposition
–  See CIS 500 next Fall if you’re interested in type systems!

CIS 341: Compilers 8

(BACK TO) LOCALS STORAGE

Zdancewic CIS 341: Compilers 9

Abstract Storage: Locals
•  Consider this factorial program:

•  When generating code for a declaration: int acc = 1;
–  Need to allocate some local storage space – a “stack slot” or a register

•  When compiling the use of a variable: acc = acc * f;
–  the compiler needs to refer to the appropriate slot given the variable

names.

•  Managed by a context that maps variable identifiers to %uids

CIS 341: Compilers 10

int acc = 1;!
int f = 6;!
while (f > 0) {!
 acc = acc * f;!
 f = f – 1!
}!
return acc;!

Locals and Contexts
•  A local is just an abstract location with a unique identifier (uids)

–  The compiler can create new names as needed
–  Historically called “gen_sym” for “generate a symbol”

•  The compiler manages a mapping from user-defined variable names
(e.g. strings) to the uids
–  This mapping is a context (or symbol table)
–  It defines the scope of live variables just as in the “scope checking”

•  There are many ways to store the map (e.g. Hash table); efficiency
matters for industrial-scale compilers

CIS 341: Compilers 11

Specifying Compilation with Judgments
•  Just as for scope checking, there is one judgment form for each

syntactic category:���

 C ⊢ ⟦ exp ⟧ = operand * insns���
 C ⊢ ⟦ stmt ⟧ = insns���
 C1 ⊢ ⟦ vdecl ⟧ = insns, C2���
 C2 ⊢ ⟦ vdecl list ⟧ = insns, C2���
 C1 ⊢ ⟦ block ⟧ = insns, C2���
 ⊢ ⟦ prog ⟧ = insns

•  Unlike scope checking, contexts C map variables to LLVM’s %uid’s:���

 C ::= [] | x ↦ %uid, C

Zdancewic CIS 341: Compilers 12

Example Compilation Rules

Zdancewic CIS 341: Compilers 13

C ⊢ ⟦ Cimm(i) ⟧ = (Const i, [])

 x ↦ %uid ∈ C %tmp = gen_sym()
C ⊢ ⟦ Id x ⟧ = (%tmp, [%tmp = load %uid])

C ⊢ ⟦ int x = e; ⟧ = defn@[%uid = alloca; store %val, %uid], ���
 (x ↦ %uid, C)

C ⊢ ⟦ e ⟧ = (%val, defn) %uid = gen_sym()!

Tracking alloca’ed Slots
•  Consider this program and its contexts:

•  The context reflects the block-structured scoping of variables
–  So that the last use of x refers to the appropriate local uid
–  Some languages limit shadowing to simplify context management

CIS 341: Compilers 14

! ! ! ! ![] ! ! ! ! ! !// initially empty!
int x = 1; ![x↦%uid0]!
int y = 0; ![x↦%uid0, y↦%uid1]!
{!
 int x = 3; ![x↦%uid2, x↦%uid0, y↦%uid1] // shadowing!
 y = x + y; ![x↦%uid2, x↦%uid0, y↦%uid1]!
}!
y = x + y; ![x↦%uid0, y↦%uid1] // first binding again!
return y;!

Compiling the Context
•  To generate X86 code from LLVM code, the compiler must map %uids

to either registers or stack space.

•  There are many correct implementations:
–  Example 1: Calculate the total number of distinct %uid values and then

allocate enough stack space to hold all of them. Map each %uid to a
particular offset into the stack.

–  Example 2: Same as Example 1, but try to “reuse” slots���
once it’s clear that their values are no longer used (for example when the
variables they store leave scope).

–  Example 3: Register allocation: Try to optimally pack %uid values into
registers, using the stack only when necessary. (Later in the class.)

•  Different choices about when to allocate space:
–  Allocate all of the space at once (e.g. at the start of the program)
–  Allocate space upon entering into a new block/scope

CIS 341: Compilers 15

COMPILING CONTROL

Zdancewic CIS 341: Compilers 16

Translating while
•  Consider translating “while(e) s”:

–  Test the conditional, if true jump to the body, else jump to the label after the
body.

⟦while(e) s⟧ =

•  Note: writing %cnd = ⟦e⟧ is slight pun
–  translating ⟦e⟧ generates code that puts the result somewhere, the conditional

tests against the result, must thread code through
•  Note: must also thread the context through as appropriate:

–  The “C ⊢” part of the judgment “C ⊢ ⟦ e ⟧ = …” has been omitted

CIS 341: Compilers 17

lpre:!
!%cnd = ⟦e⟧!
!%test = icmp eq %cnd, 0!
!br %test, label %lpost, label %lbody!

lbody:!
 ⟦s⟧!
 br %lpre!
lpost:!

Translating if-then-else
•  Similar to while except that code is slightly more complicated because

if-then-else must reach a merge and the else branch is optional.���

C ⊢ ⟦if (e1) s1 else s2⟧ =

•  The compiler must also thread through the context as appropriate

CIS 341: Compilers 18

!%cnd = ⟦e⟧!
!%test = icmp eq %cnd, 0!
!br %test, label %else, label %then!

then:!
 ⟦s1⟧!
 br %merge!
else:!

!⟦s2⟧!
 br %merge!
merge:!

OPTIMIZING CONTROL

Zdancewic CIS 341: Compilers 19

Standard Evaluation
•  Consider compiling the following program fragment: 

if (x & !y | !w)  
 z = 3;  
else  
 z = 4;  
return z;

CIS 341: Compilers 20

!%tmp1 = icmp Eq ⟦y⟧, 0 ; !y!
!%tmp2 = and ⟦x⟧ ⟦tmp1⟧!
!%tmp3 = icmp Eq ⟦w⟧, 0!
!%tmp4 = or %tmp2, %tmp3!
!%tmp5 = icmp Eq %tmp4, 0!
!br %tmp4, label %else, label %then!

then:!
!store ⟦z⟧, 3!
!br %merge!

else:!
!store ⟦z⟧, 4!
!br %merge!

merge:!
!%tmp5 = load ⟦z⟧!
!ret %tmp5!

Observation
•  Usually, we want the translation ⟦e⟧ to produce a value

–  C ⊢ ⟦e⟧ = (operand, insns)
–  e.g. C ⊢ ⟦e1 + e2⟧ = (%tmp, [%tmp = add ⟦e1⟧ ⟦e2⟧])

•  But when the expression we’re compiling appears in a test, the
program jumps to one label or another after the comparison but
otherwise never uses the value.

•  In many cases, we can avoid “materializing” the value (i.e. storing it in
a temporary) and thus produce better code.
–  This idea also lets usimplement different functionality too: ���

e.g. short-circuiting boolean expressions

CIS 341: Compilers 21

Idea: Use a different translation for tests
Expression translation: C ⊢ E⟦e⟧ = (operand, insns)
Conditional translation: C ⊢ C⟦e⟧ ltrue lfalse = insns

Notes:
•  C⟦e⟧ takes two extra���

arguments: a “true”���
branch label and a ���
“false” branch label.

•  Doesn’t “return a value”

•  Aside: this is a form of���
continuation-passing���
translation…

CIS 341: Compilers 22

where
 C ⊢ ⟦s1⟧ = insns1 ���
 C ⊢ ⟦s2⟧ = insns2
 C ⊢ C⟦e⟧	
 then	
 else	
 = insns3

C ⊢ ⟦if (e) then s1 else s2⟧ =

!insns3!
then:!
 ⟦s1⟧!
 br %merge!
else:!

!⟦s2⟧!
 br %merge!
merge:!

Short Circuit Compilation: Expressions
•  C ⊢ C⟦e⟧ ltrue lfalse = insns

Zdancewic CIS 341: Compilers 23

C	
 ⊢	
 C⟦0⟧ ltrue lfalse =	
 [br %lfalse]

C	
 ⊢	
 C⟦n⟧	
 ltrue lfalse = [br %ltrue]

C	
 ⊢	
 C⟦!e⟧ ltrue lfalse = insns

C	
 ⊢	
 C⟦e⟧ lfalse ltrue = insns

n != 0!

FALSE

TRUE

NOT

Short Circuit Evaluation
•  C ⊢ C⟦e⟧ ltrue lfalse = insns

Zdancewic CIS 341: Compilers 24

C	
 ⊢	
 C⟦e1 & e2⟧ ltrue lfalse =

C	
 ⊢	
 C⟦e1⟧ right lfalse = insns1 C	
 ⊢	
 C⟦e2⟧ ltrue lfalse = insns2

!insns1!
right:!
 insn2!

where right is a fresh label

C	
 ⊢	
 C⟦e1 | e2⟧ ltrue lfalse =

C	
 ⊢	
 C⟦e1⟧ ltrue right = insns1 C	
 ⊢	
 C⟦e2⟧ ltrue lfalse = insns2

!insns1!
right:!
 insn2!

Implementing C⟦e⟧(ctxt,ltrue,lfalse)
•  Sketch	
 of	
 an	
 implementa8on:	
 (a	
 few	
 interes8ng	
 cases)	

let rec c_compile (c:ctxt) (e:exp) (ltrue:Label.t) (lfalse:Label.t) =  
begin match e with  
| Cint (0l) -> [Br lfalse]  
| Cint _ -> [Br ltrue]!

 | Id x -> !
 let (tmp1, insns) = compile c (Id x) in!
 let tmp2 = gen_sym () in!
 insns >@ [tmp2 = icmp Eq tmp1, 0; Cbr(tmp2, lfalse, ltrue)] !
 !| Binop (And, e1, e2) -> (* short circuiting evaluation *)!
!! let lright = mk_label() in!

 let insns1 = c_compile e1 c lright lfalse in!
 let insns2 = c_compile e2 c ltrue lfalse in!
 insns1 >@ (Label lright) >:: insn2!
 | Unop (Lognot, e1) ->  

! c_compile e1 ctxt lfalse ltrue!
 | … !

CIS 341: Compilers 25

Short-Circuit Evaluation
•  Consider compiling the following program fragment: 

if (x & !y | !w)  
 z = 3;  
else  
 z = 4;  
return z;

CIS 341: Compilers 26

!%tmp1 = icmp Eq ⟦x⟧, 0 !
!br %tmp1, label %right2, label %right1!

right1:!
!%tmp2 = icmp Eq ⟦y⟧, 0!
!br %tmp2, label %then, label %right2 !!

right2:!
!%tmp3 = icmp Eq ⟦w⟧, 0!
!br %tmp3, label %then, label %else!

then:!
!store ⟦z⟧, 3!
!br %merge!

else:!
!store ⟦z⟧, 4!
!br %merge!

merge:!
!%tmp5 = load ⟦z⟧!
!ret %tmp5!

