Lecture 12

CIS 341: COMPILERS



Announcements

* Project 3: Compiling Control Flow
— Due: Monday, February 25% at 11:59pm

*  Midterm Exam:
— Thursday, February 28
— In class
— Examples on the web

Zdancewic  CIS 341: Compilers



STRUCTURED DATA

Zdancewic  CIS 341: Compilers



Compiling Structured Data

« Consider C-style structures like those below.
* How do we represent Point and Rect values?

struct Point { int x; int y; };
struct Rect { struct Point 11, lr, ul, ur };

struct Rect mk square(struct Point 11, int len) ({

struct Rect square;

square.ll = square.lr = square.ul = square.ur = 1l1l;
square.lr.x += len;

square.ul.y += len;

square.ur.x += len;

square.ur.y += len;

return square;

CIS 341: Compilers



CIS 341: Compilers

Representing Structs

struct Point { int x; int y;};
Store the data using two contiguous words of memory.
Represent a Point value p as the address of the first word.

Pp——> X y

struct Rect { struct Point 11, lr, ul, ur };

Store the data using 8 contiguous words of memory.

squaré—> 11.x | 1l.y | lr.x | lr.y |ul.x |ul.y |ur.x | ur.y

Compiler needs to know the size of the struct at compile time to
allocate the needed storage space.

Compiler needs to know the shape of the struct at compile time to
index into the structure.

U1



Assembly-level Member Access

squaré—> 11.x | 1l.y | lr.x | lr.y |ul.x |ul.y | ur.x | ur.

struct Point { int x; int y; };

struct Rect { struct Point 11, 1lr, ul, ur };

Consider: Cr [square.ul.y] = (x86.operand, x86.insns)

Assume that ECX holds the base address of square

Calculate the offset relative to the base pointer of the data:
— ul = sizeof(struct Point) + sizeof(struct Point)
— y = sizeof(int)

So: [square.ul.y] = (ans, Mov ans [ECX + 20])

CIS 341: Compilers



Padding & Alignment

* How to lay out non-homogeneous structured data?

struct Example {

int x;
char a; )
I SThse Tor N9t324nt
32-bit boundaries int y; aligned
/\ };'
X ab y<
X |
. 2 b: Yy
| L] BN B Y

Zdancewic  CIS 341: Compilers Paddlng



Copy-in/Copy-out

When we do an assignment in C as in:

struct Rect mk square(struct Point 11, int elen) {
struct Square res;
res.lr = 11;

then we copy all of the elements out of the source and put them
in the target. Same as doing word-level operations:

struct Rect mk square(struct Point 11, int elen) {
struct Square res;

res.lr.x = 11.x;
res.lr.y = 11.x;

 For really large copies, the compiler uses something like memcpy
(which is implemented using a loop in assembly).



Procedure Calls

Similarly, when we call a procedure, we copy arguments in, and copy
results out.

— Caller sets aside extra space in its frame to store results that are bigger
than will fit in EAX.

— We do the same with scalar values such as integers or doubles.

Sometimes, this is termed "call-by-value".
— This is bad terminology.
— Copy-in/copy-out is more accurate.

Problem: expensive for large records...
In C: pass pointers to structs: “call-by-reference”

Languages like Java and OCaml always pass non-word-sized objects
by reference.



Call-by-Reference:

void mkSquare(struct Point *11, int elen,
struct Rect *res) {

res->1lr = res->ul = res->ur = res->11 = *11;
res->lr.x += elen;
res->ur.x += elen;
res->ur.y += elen;
res->ul.y += elen;
}
void foo() {

struct Point origin = {0,0};
struct Square unit sq;
mkSquare(&origin, 1, &unit sq);

}

The caller passes in the address of the point and the
address of the result (1 word each).

Note that returning references to stack-allocated data can
cause problems.

— Need to allocate storage in the heap...



ARRAYS

Zdancewic

CIS 341: Compilers

11



Arrays

void foo() { void foo() {
char buf[27]; char buf[27];
buf[0] = 'a'; *(buf) = 'a';
buf[l] = 'b'; *(buf+l) = 'b';
buf[25] = 'z'; *(buf+25) = 'z';
buf[26] = 0; *(buf+26) = 0;

} }

» Space is allocated on the stack for buf.

— Note, without the ability to allocated stack space dynamically (C’s
alloca function) need to know size of buf at compile time...

« buf[i] isreally just: (base_of_array) + i * elt_size



Multi-Dimensional Arrays

* InC, int M[4][3] yields an array with 4 rows and 3 columns.
 Laid out in row-major order:

M[O][O]  M[O][1] | M[O][2]  M[1][O] | M[1][1] | M[1][2] M[2][O]

*  MIillj] compiles to?

 In Fortran, arrays are laid out in column major order.

M[O][O] | M[1][O0] M[2][0] M[3][O0] M[O]J[l] M[1][1] M[2][1]

« In ML and Java, there are no multi-dimensional arrays:
— (int array) array is represented as an array of pointers to arrays of ints.
*  Why is knowing these memory layout strategies important?




Array Bounds Checks

 Safe languages (e.g. Java, C#, ML but not C, C++) check array indices
to ensure that they’re in bounds.
— Compiler generates code to test that the computed offset is legal
* Needs to know the size of the array... where to store it?
— One answer: Store the size before the array contents.

arxr
N

Size=7| A[O0] A[1l] A[2] A[3] A[4] A[5] A[6]

* Other possibilities:
— Pascal: only permit statically known array sizes (very unwieldy in
practice)

— What about multi-dimensional arrays?

CIS 341: Compilers 14



Array Bounds Checks (Implementation)

« Example: Assume EAX holds the base pointer (arr) and ECX holds the
array index i. To read a value from the array arr[i]:

Mov EDX [EAX - 4] // load size into EDX

Cmp ECX EDX // compare index to bound

J 1l ok // jump if 0 <=1i<size

Call err oob // test failed, call the error handler
___ok:

Mov dest [EAX + 4*ECX] // do the load from the array access

* Clearly more expensive: adds move, comparison & jump
— More memory traffic

— Hardware can improve performance: executing instructions in parallel,
branch prediction

« These overheads are particularly bad in an inner loop

« Compiler optimizations can help remove the overhead
— e.g. In afor loop, if bound on index is known, only do the test once

CIS 341: Compilers 15



C-style Strings
A string constant "foo" is represented as global data:

_string42: 102 111 111 O

C uses null-terminated strings

Strings are usually placed in the text segment so they are read only.
— allows all copies of the same string to be shared.

Rookie mistake (in C): write to a string constant.

char *p = "foo”;
p[0] = 'b’;

Instead, must allocate space on the heap:

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4); /* include the null byte */
p[0] = 'b’;



TAGGED DATATYPES

Zdancewic  CIS 341: Compilers



C-style Enumerations / ML-style datatypes

e |InC;

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

* In ML:
type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
« Associate an integer tag with each case: sun =0, mon =1, ...
— C lets programmers choose the tags

« ML datatypes can also carry data:

type foo = Bar of int | Baz of int * foo

* Representation: a foo value is a pointer to a pair: (tag, data)
« Example: tag(Bar) = 0, tag(Baz) = 1

[let £ = Bar(3)]= f— 3 0 3 //_)

g—> 1 | 4 | &

[let g = Baz(4, f)l=

CIS 341: Compilers

18



Switch Compilation

e Consider the C statement:
switch (e) {
case sun: sl; break;

case mon: s2; break;

case sat: s3; break;

}
* How to compile this?

— What happens if some of the break statements are omitted? (Control falls
through to the next branch.)

CIS 341: Compilers



Cascading ifs and Jumps

[switch(e) {case tagl: sl; case tag2 s2; ..}]=

stag = [e];

br label %11
1l1: %cmpl = icmp eq %tag, Stagl

br %cmpl label %bl, label %merge
bl: [sl]

« Fach $tagl..StagN
stagl..Stag br label %12

Is just a constant

int tag value. 12: %cmp2 = icmp eq %tag, S$tag2

br %cmp2 label %b2, label %merge
b2: [s2]

br label %13
* Note: [break:]

(m@ﬂﬂnthe IN: %cmpN = icmp eq %tag, S$tagN
switch branches) br $cmpN label %bN, label %merge
IS: bN: [sN]
br %merge br label %merge

merge:

CIS 341: Compilers



Alternatives for Switch Compilation

» Nested if-then-else works OK in practice if # of branches is small
— (e.g. < 16 or so).
 For more branches, use better datastructures to organize the jumps:
— Create a table of pairs (v1, branch_label) and loop through
— Or, do binary search rather than linear search
— Or, use a hash table rather than binary search

« One common case: the tags are dense in some range
[min...max]
— Let N = max — min
— Create a branch table Branches[N] where Branches[i] = branch_label for
tag I.
— Compute tag = [e] and then do an indirect jump: J Branches[tag]
« Common to use heuristics to combine these techniques.

CIS 341: Compilers 21



ML-style Pattern Matching

*  ML-style match statements are like C’s switch statements except:

— Patterns can bind variables
match e with

— Patterns can nest | Bar(z) -> el
| Baz(y, Bar(w)) -> e2
|  -> e3
o tch ith
« Compilation strategy: TaBZr(j)wf> o1
— “Flatten” nested patterns into | Baz(y, tmp) ->
matches against one constructor (match tmp with
at a time. | Bar(w) -> e2
| Baz(_, ) -> e3)

— Compile the match against the
tags of the datatype as for C-style switches.

— Code for each branch additionally must copy data from [e] to the
variables bound in the patterns.
« There are many opportunities for optimization, many papers about
“pattern-match compilation”
— Many of these transformations can be done at the AST level

CIS 341: Compilers

22



