
CIS 341: COMPILERS
Lecture 12

Announcements

•  Project 3: Compiling Control Flow
–  Due: Monday, February 25th at 11:59pm

•  Midterm Exam:
–  Thursday, February 28th
–  In class
–  Examples on the web

Zdancewic CIS 341: Compilers 2

STRUCTURED DATA

Zdancewic CIS 341: Compilers 3

Compiling Structured Data
•  Consider C-style structures like those below.
•  How do we represent Point and Rect values?!

CIS 341: Compilers 4

struct Point { int x; int y; };  

struct Rect { struct Point ll, lr, ul, ur };  

struct Rect mk_square(struct Point ll, int len) {!
 struct Rect square;!
 square.ll = square.lr = square.ul = square.ur = ll;!
 square.lr.x += len;!
 square.ul.y += len;!
 square.ur.x += len;!
 square.ur.y += len;!
 return square;!
}!

Representing Structs
!!struct Point { int x; int y;};!
•  Store the data using two contiguous words of memory.
•  Represent a Point value p as the address of the first word.

!!struct Rect { struct Point ll, lr, ul, ur };
•  Store the data using 8 contiguous words of memory.

•  Compiler needs to know the size of the struct at compile time to
allocate the needed storage space.

•  Compiler needs to know the shape of the struct at compile time to
index into the structure.

CIS 341: Compilers 5

x! y!p!

ll.x! ll.y! lr.x! lr.y! ul.x! ul.y! ur.x! ur.y!square!

Assembly-level Member Access

•  Consider: C ⊢ ⟦square.ul.y⟧ = (x86.operand, x86.insns)

•  Assume that ECX holds the base address of square
•  Calculate the offset relative to the base pointer of the data:

–  ul = sizeof(struct Point) + sizeof(struct Point)
–  y = sizeof(int)

•  So: ⟦square.ul.y⟧ = (ans, Mov ans [ECX + 20])!

CIS 341: Compilers 6

ll.x! ll.y! lr.x! lr.y! ul.x! ul.y! ur.x! ur.y!square!

struct Point { int x; int y; };  

struct Rect { struct Point ll, lr, ul, ur };!

Padding & Alignment
•  How to lay out non-homogeneous structured data?

Zdancewic CIS 341: Compilers 7

struct Example { !
 int x; !
 char a;!
 char b; !
 int y; !
};!

x! a!b! y!

x! a!b! y!

x! a! y!b!

32-bit boundaries

Padding

Not 32-bit ���
aligned

Copy-in/Copy-out
When we do an assignment in C as in:

struct Rect mk_square(struct Point ll, int elen) {!
 struct Square res;!
 res.lr = ll;  

...!

then we copy all of the elements out of the source and put them
in the target. Same as doing word-level operations:

struct Rect mk_square(struct Point ll, int elen) {!
 struct Square res;!
 res.lr.x = ll.x;!
 res.lr.y = ll.x;!
 ...!

•  For really large copies, the compiler uses something like memcpy
(which is implemented using a loop in assembly).

Procedure Calls
•  Similarly, when we call a procedure, we copy arguments in, and copy

results out.
–  Caller sets aside extra space in its frame to store results that are bigger

than will fit in EAX.
–  We do the same with scalar values such as integers or doubles.

•  Sometimes, this is termed "call-by-value".
–  This is bad terminology.
–  Copy-in/copy-out is more accurate.

•  Problem: expensive for large records…

•  In C: pass pointers to structs: “call-by-reference”

•  Languages like Java and OCaml always pass non-word-sized objects
by reference.

Call-by-Reference:

•  The caller passes in the address of the point and the
address of the result (1 word each).

•  Note that returning references to stack-allocated data can
cause problems.
–  Need to allocate storage in the heap…

void mkSquare(struct Point *ll, int elen,!
 struct Rect *res) {!
 res->lr = res->ul = res->ur = res->ll = *ll;!
 res->lr.x += elen;!
 res->ur.x += elen; !
 res->ur.y += elen;!
 res->ul.y += elen;!
}!

void foo() {!
 struct Point origin = {0,0};!
 struct Square unit_sq;!
 mkSquare(&origin, 1, &unit_sq);!
}!

ARRAYS

Zdancewic CIS 341: Compilers 11

Arrays

•  Space is allocated on the stack for buf.
–  Note, without the ability to allocated stack space dynamically (C’s

alloca function) need to know size of buf at compile time…

•  buf[i] is really just: (base_of_array) + i * elt_size

void foo() { ! ! ! !void foo() {!
 char buf[27]; ! ! char buf[27];!

 buf[0] = 'a'; ! ! *(buf) = 'a';!
 buf[1] = 'b'; ! ! *(buf+1) = 'b';!
 ... ! ! ! ! ...!
 buf[25] = 'z';! ! *(buf+25) = 'z';!
 buf[26] = 0; ! ! *(buf+26) = 0;!
} ! ! ! ! ! }!

Multi-Dimensional Arrays
•  In C, int M[4][3] yields an array with 4 rows and 3 columns.
•  Laid out in row-major order:���

•  M[i][j] compiles to?

•  In Fortran, arrays are laid out in column major order.

•  In ML and Java, there are no multi-dimensional arrays:
–  (int array) array is represented as an array of pointers to arrays of ints.

•  Why is knowing these memory layout strategies important?

M[0][0]! M[0][1]! M[0][2]! M[1][0]! M[1][1]! M[1][2]! M[2][0]! …!

M[0][0]! M[1][0]! M[2][0]! M[3][0]! M[0][1]! M[1][1]! M[2][1]! …!

Array Bounds Checks
•  Safe languages (e.g. Java, C#, ML but not C, C++) check array indices

to ensure that they’re in bounds.
–  Compiler generates code to test that the computed offset is legal

•  Needs to know the size of the array… where to store it?
–  One answer: Store the size before the array contents.

•  Other possibilities:
–  Pascal: only permit statically known array sizes (very unwieldy in

practice)
–  What about multi-dimensional arrays?

CIS 341: Compilers 14

Size=7! A[0]! A[1]! A[2]! A[3]! A[4]! A[5]! A[6]!

arr!

Array Bounds Checks (Implementation)
•  Example: Assume EAX holds the base pointer (arr) and ECX holds the

array index i. To read a value from the array arr[i]:���
 Mov EDX [EAX - 4] // load size into EDX���
 Cmp ECX EDX // compare index to bound���
 J l __ok // jump if 0 <= i < size���
 Call __err_oob // test failed, call the error handler���
__ok: !  
! !Mov dest [EAX + 4*ECX] // do the load from the array access

•  Clearly more expensive: adds move, comparison & jump
–  More memory traffic
–  Hardware can improve performance: executing instructions in parallel,

branch prediction

•  These overheads are particularly bad in an inner loop
•  Compiler optimizations can help remove the overhead

–  e.g. In a for loop, if bound on index is known, only do the test once

CIS 341: Compilers 15

C-style Strings
•  A string constant "foo" is represented as global data:

 _string42: 102 111 111 0!

•  C uses null-terminated strings
•  Strings are usually placed in the text segment so they are read only.

–  allows all copies of the same string to be shared.

•  Rookie mistake (in C): write to a string constant.

•  Instead, must allocate space on the heap:

char *p = "foo”;!
p[0] = 'b’;!

char *p = (char *)malloc(4 * sizeof(char));!
strncpy(p, “foo”, 4); /* include the null byte */!
p[0] = 'b’;!

TAGGED DATATYPES

Zdancewic CIS 341: Compilers 17

C-style Enumerations / ML-style datatypes
•  In C:

•  In ML:

•  Associate an integer tag with each case: sun = 0, mon = 1, …
–  C lets programmers choose the tags

•  ML datatypes can also carry data:

•  Representation: a foo value is a pointer to a pair: (tag, data)
•  Example: tag(Bar) = 0, tag(Baz) = 1���

⟦let f = Bar(3)⟧ = ���

⟦let g = Baz(4, f)⟧ =

CIS 341: Compilers 18

0! 3!f!

1! 4! f!g!

enum Day {sun, mon, tue, wed, thu, fri, sat} today;	

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat!

type foo = Bar of int | Baz of int * foo!

Switch Compilation
•  Consider the C statement:
!! !switch (e) {!
!! ! !case sun: s1; break;!
!! ! !case mon: s2; break;!
!! ! !…!
!! ! !case sat: s3; break;!
!! !}!

•  How to compile this?
–  What happens if some of the break statements are omitted? (Control falls

through to the next branch.)

CIS 341: Compilers 19

 Cascading ifs and Jumps
⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ =

•  Each $tag1…$tagN ���
is just a constant���
int tag value.

•  Note: ⟦break;⟧���
(within the ���
switch branches)���
is:���
 br %merge ���

CIS 341: Compilers 20

!%tag = ⟦e⟧;!
!br label %l1!

l1: %cmp1 = icmp eq %tag, $tag1 !
!br %cmp1 label %b1, label %merge!

b1: ⟦s1⟧!
!br label %l2 !

l2: %cmp2 = icmp eq %tag, $tag2 !
!br %cmp2 label %b2, label %merge!

b2: ⟦s2⟧!
!br label %l3!

…!
lN: %cmpN = icmp eq %tag, $tagN !

!br %cmpN label %bN, label %merge!
bN: ⟦sN⟧!

!br label %merge!

merge: !

Alternatives for Switch Compilation
•  Nested if-then-else works OK in practice if # of branches is small

–  (e.g. < 16 or so).

•  For more branches, use better datastructures to organize the jumps:
–  Create a table of pairs (v1, branch_label) and loop through
–  Or, do binary search rather than linear search
–  Or, use a hash table rather than binary search

•  One common case: the tags are dense in some range ���
[min…max]
–  Let N = max – min
–  Create a branch table Branches[N] where Branches[i] = branch_label for

tag i.
–  Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]

•  Common to use heuristics to combine these techniques.

CIS 341: Compilers 21

ML-style Pattern Matching
•  ML-style match statements are like C’s switch statements except:

–  Patterns can bind variables
–  Patterns can nest

•  Compilation strategy:
–  “Flatten” nested patterns into���

matches against one constructor���
at a time.

–  Compile the match against the���
tags of the datatype as for C-style switches.

–  Code for each branch additionally must copy data from ⟦e⟧ to the
variables bound in the patterns.

•  There are many opportunities for optimization, many papers about
“pattern-match compilation”
–  Many of these transformations can be done at the AST level

CIS 341: Compilers 22

match e with !
| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2!
| _ -> e3!

match e with !
| Bar(z) -> e1  
| Baz(y, tmp) -> !
 (match tmp with!

! !| Bar(w) -> e2!
! !| Baz(_, _) -> e3)!

