Lecture 14

CIS 341: COMPILERS

Announcements

« Midterm Exam:
— Not quite done grading yet!
— Will be available Thursday

* Project 4 is available from the course web pages
— Due on Thursday, March 21st.
— As usual, start early and ask questions if you get stuck

— Note: revised version of LL intermediate representation to be more
compliant with “real” LLVM IR

Zdancewic CIS 341: Compilers

Untyped lambda calculus
Substitution
Evaluation

FIRST-CLASS FUNCTIONS

Zdancewic CIS 341: Compilers

“Functional” languages

« Languages like ML, Haskell, Scheme, Python, C#, (maybe eventually
Java?) include first-class functions.

 Functions can be passed as arguments (e.g. map or fold)
* Functions can be returned as values (e.g. compose)

e Functions nest: inner function can refer to variables bound in the outer
function

let add = fun x -> funy -> x + vy
let inc = add 1
let dec = add -1

let compose = fun £ -> fun g -> fun x -> £ (g x)
let id = compose inc dec

* How do we implement such functions?

CIS 341: Compilers 4

Free Variables and Scoping

let add = fun x -=> funy -> x + y
let inc = add 1

e Theresult of add 1 is a function

 After calling add, we can’t throw away its argument (or its local
variables) because those are needed in the function returned by add.

« We say that the variable x is free in fun y -=> x + y
— Free variables are defined in an outer scope

« We say that the variable y is bound by “fun y” and its scope is the
body “x + y” in the expression fun y -> x + y

e A term with no free variables is called closed.
« A term with one or more free variables is called open.

CIS 341: Compilers

(Untyped) Lambda Calculus

« The lambda calculus is a minimal programming language.
— Note: we're writing (fun x -> e) lambda-calculus notation: A x. e

* It has variables, functions, and function application.
— That's it! (Though for examples, I'll add int and +)
— It's Turing Complete.
— It’s the foundation for a /ot of research in programming languages.
— Basis for “functional” languages like Scheme, ML, Haskell, etc.

Abstract syntax in OCaml:
type exp =

| var of var (* variables *)
| Fun of var * exp (* functions: fun x -> e *)

| App of exp * exp (* function application ¥*)

Concrete syntax:

exp =
X variables
fun x ->exp functions
exp; exp, function application
CIS 341: Compilers (exp) parentheses

Values and Substitution

« The only values of the lambda calculus are (closed) functions:

val ::=
| fun x =>exp functions are values

» To substitute a (closed) value v for some variable x in an expression e
— Replace all free occurrences of x in e by v.
— In OCaml: written subst v x e
— In Math: written e{v/x}

 Function application is interpreted by substitution:
(fun x -=> funy ->x +vy) 1
= subst 1 x (fun y -> x + vy)
(fun y -=> 1 + vy)

CIS 341: Compilers

Lambda Calculus Operational Semantics

e Substitution function (in Math):

x{v/x} =V (replace the free x by v)
yiv/ix} =y (assuming y # x)
(fun x -> exp){v/x} = (fun x -> exp) (x is bound in exp)
(fun y -> exp){v/x} = (fun y -> exp{v/x}) (assuming y # x)
(e, e){v/x} = (e {v/x} e {v/x}) (substitute everywhere)

« Examples:
x y {(fun z ->2)/y} = x(funz->2z)

(fun x -> x y){(fun z -> z) /y} = (fun x -> x (fun z -> 7))

(fun x -=>x){(fun z->2)/x} = (funx->x) // xis not free!

Zdancewic CIS 341: Compilers 8

Free Variable Calculation

« An OCaml function to calculate the set of free variables in a lambda
expression:

let rec free vars (e:exp) : VarSet.t =
begin match e with
| Var x -> VarSet.singleton x
| Fun(x, body) -> VarSet.remove x (free vars body)
| App(el, e2) -> VarSet.union (free vars el) (free vars e2)
end

« A lambda expression e is closed if free vars e returns
VarSet.empty

e |n mathematical notation:

fv(x) = {x}
fv(fun x -> exp) = fv(exp) \ {x} (“x” is a bound in exp)
fv(exp, exp,) = fv(exp;) U fv(exp,)

Zdancewic CIS 341: Compilers 9

Operational Semantics

* Specified using just two inference rules with judgments of the form
exp U val

— Read this notation a as “program exp evaluates to value val”

— This is call-by-value semantics: function arguments are evaluated before
substitution

viv

“Values evaluate to themselves”

exp; U (fun x ->exp;) exp, Uv exp;{v/x} U w

exp; exp, ¥ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

Zdancewic CIS 341: Compilers 10

Adding Integers to Lambda Calculus

exp =
| n constant integers
| exp; + exp, binary arithmetic operation
val ::=
| fun x -=> exp functions are values
| n integers are values
n{v/x} =n constants have no free vars.
(e; + e){v/x} = (e{v/x} + e,{v/x}) substitute everywhere

exp; ¥ n; exp2 U n,

exp; + exp, U (n1 [+] n2)

NN T

Object-level '+’ Meta-level ‘+’
Zdancewic CIS 341: Compilers

How to Implement?

e Code in fun.ml shows:

— A substitution-based interpreter
— Two environment-based interpreters (one broken)

* We'll come back to compilation after discussing
typechecking....

CIS 341: Compilers

12

Ruling out ill-defined programs at compile time.

TYPE CHECKING

Zdancewic CIS 341: Compilers

13

Type Checking / Static Analysis

 Recall the interpreter from the Eval3 module:

let rec eval env e =
match e with

| Add (el, e2) ->
(match (eval env el, eval env e2) with
| (Intv il, IntVv i2) -> IntV (il + 1i2)
| -> failwith "tried to add non-integers")

.
 The interpreter might fail at runtime.

— Not all operations are defined for all values (e.g. 3/0, 3 + true, ...)

« A compiler can’t generate sensible code for this
case.

— A naive implementation might “add” an integer and a pointer

CIS 341: Compilers

14

What to do?

« Don't worry about it... e.g. C, C++
— Result: segmentation faults, bus errors, etc.

* Make all operations total (i.e. defined everywhere)... e.g. Scheme / Per]
— 3 +true 2> 42, ... (language specifies behavior)
— Result: unpredictable answers

* Raise a “runtime type error”... e.g. Python, Ruby, and other dynamically
typed languages

— Result: failure at deployment time

* Try to rule out ill-formed programs... e.g. Java, C#, ML, Haskell

— 3 +true > compiler error:
“This expression has type bool but is here used with type int”

— Result: predictable programs, but it’s harder to “get programs running”

How do you know you’ve ruled out all ill-formed programs?

CIS 341: Compilers 15

Type Soundness

Build a model of the programming language
— One model: an interpreter

— Another model: constructed in mathematics
— Usually defined via the abstract syntax

Model defines where the language operations are partial

— Partiality is different for different languages: e.g. “foo” + “bar” is
meaningful in Java but not OCaml

Construct a function: well typed : Ast -> unit

— Whenwell typed e succeeds, running e will definitely not trigger
one of the undefined operation cases (i.e. e is type safe)

— When well typed e aborts with an exception, running e might trigger
an undefined operation (i.e. e is not type safe)
Prove that the well typed function is correct.

— Such proofs are sometimes difficult, but doable for real languages (e.g.
SML, Java)

CIS 341: Compilers 16

Typechecking

« How do we implement the function well typed?

« Big idea: “approximate” the interpreter:

— Problem is partiality in the language semantics as defined by the
Interpreter.

— Instead of interpreting the program, write a function called typecheck
that computes a type for the program (rather than the answer obtained by
running the program).

— Behavior of typecheck is guided by what the interpreter would do.

l//

e See “tc.m

CIS 341: Compilers 17

Notes about this Typechecker

In the interpreter, we only evaluate the body of a function when it's
applied.

In the typechecker, we always check the body of the function (even if
it's never applied.)

— Because of this, we must assume the input has some type (say t;) and
reflect this in the type of the function
(t1 -> t2).

Dually, at a call site (e, e,), we don't know what closure we're going
to get.

— But we can calculate e,'s type, check that e, is an argument of the right
type, and also determine what type e, will return.

Question: Why is this an approximation?
Question: What if well typed always returns false?

Defining Type Systems Mathematically

* In the OCaml implementation we have:
typecheck (env:environment) (e:exp):ty

— Where exp is the type of abstract syntax and environment isa list of
var * ty pairs.

— The result of typecheck is a type

 We can abstract this function in math as a relation:
The notation: ErFe:t means typecheck Ce =t

— “In the environment E, program e is well-typed and has type t”
— “e:t” isatype judgment

e Simple examples: ~3:int +true:bool + “hello”: string

« Bigger examples: +=(2*3)+ 5 :int = if (true) 3 else 4 : int

CIS 341: Compilers 19

Type Judgments

In the judgment: Ere:t
— Ei1s a typing environment or a type context
— E maps variables to types. It is just a set of bindings of the form:

X114, X0, 0, X, g
For example: x :int, b : bool - if (b) 3 else x : int

What do we need to know to decide whether “if (b) 3 else x” has type

int in the environment x : int, b : bool?
X :int, b : bool F b : bool

— b must be a bool i.e.
— 3 must be an int i.e. X :int, b : bool 3 :int
— X must be an int i.e. X :int, b : bool F x : int

CIS 341: Compilers

20

Generalizing ‘if’ & Inference Rules

« For any environment E, expressions e,, e,, e;, and type T the judgment
E-if(e;)e,elsee;: T

istrueif Ere,:bool, and Ere,:T, and Ere;: T areall true.
* More succinctly: we summarize this as an inference rule:

Premises Er-e :bool Ere,:T Erey:T

Ll

Conclusion: Erif(e)e,elsee;: T

S—

 This rule holds for any substitution of the syntactic metavariables E, e,
e, €y, and T

CIS 341: Compilers 21

Simply-typed Lambda Calculus

* For the language in “tc.ml” we have five inference rules:

INT VAR ADD
x: T € E Ere,:int Ere,:int
EFi:int EFx:T EFre, +e,:int
FUN APP
E,x:Tre:S EFe, :T->S Ere,:T
E+fun (xT)->e : T->S EFre e, :S

« Note how these rules correspond to the code.

CIS 341: Compilers

22

Type Checking Derivations

A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

 Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

« (Goal of the typechecker: verify that such a tree exists.

« Example: Find a tree for the following program using the inference
rules on the previous slide:

= (fun (x:int) -=> x + 3) 5 :int

CIS 341: Compilers 23

Example Derivation Tree

int € x:int

X
VAR INT
X:intFx :int X:intF3 :int
ADD
X:intEXx+ 3 :int
FUN INT

= (fun (x:int) -=> x + 3) : int -> int =5 :int

APP : :
= (fun (x:int) -=>x +3)5 :int

Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is

the same shape as this tree!
Note that x : int € E is implemented by the function 1lookup

24

CIS 341: Compilers

