
CIS 341: COMPILERS 
Lecture 14 



Announcements 
•  Midterm Exam: 

–  Not quite done grading yet!   
–  Will be available Thursday 

•  Project 4 is available from the course web pages 
–  Due on Thursday, March 21st. 
–  As usual, start early and ask questions if you get stuck 
–  Note: revised version of LL intermediate representation to be more 

compliant with “real” LLVM IR 
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FIRST-CLASS FUNCTIONS 
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Untyped lambda calculus 
Substitution 
Evaluation 



“Functional” languages 
•  Languages like ML, Haskell, Scheme, Python, C#, (maybe eventually 

Java?) include first-class functions. 
•  Functions can be passed as arguments (e.g. map or fold) 
•  Functions can be returned as values (e.g. compose) 
•  Functions nest: inner function can refer to variables bound in the outer 

function 

let add = fun x -> fun y -> x + y!
let inc = add 1!
let dec = add -1!

let compose = fun f -> fun g -> fun x -> f (g x)!
let id = compose inc dec !

•  How do we implement such functions?!
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Free Variables and Scoping 
let add = fun x -> fun y -> x + y!
let inc = add 1 

•  The result of add 1 is a function 
•  After calling add, we can’t throw away its argument (or its local 

variables) because those are needed in the function returned by add. 
•  We say that the variable x is free in fun y -> x + y!

–  Free variables are defined in an outer scope 

•  We say that the variable y is bound by “fun y” and its scope is the 
body “x + y” in the expression fun y -> x + y!

•  A term with no free variables is called closed. 
•  A term with one or more free variables is called open. 
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(Untyped) Lambda Calculus 
•  The lambda calculus is a minimal programming language. 

–  Note:  we’re writing  (fun x -> e) lambda-calculus notation:  λ x. e 

•  It has variables, functions, and function application. 
–  That’s it!  (Though for examples, I’ll add int and +) 
–  It’s Turing Complete. 
–  It’s the foundation for a lot of research in programming languages. 
–  Basis for “functional” languages like Scheme, ML, Haskell, etc. 

Abstract syntax in OCaml: 

Concrete syntax: 
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type exp = !
 | Var of var        (* variables             *)!
 | Fun of var * exp  (* functions: fun x -> e *)!
 | App of exp * exp  (* function application  *)!

exp ::=  
 | x     variables  
 | fun x -> exp  functions 
 | exp1 exp2   function application 
 | ( exp )   parentheses!



Values and Substitution 
•  The only values of the lambda calculus are (closed) functions: 

•  To substitute a (closed) value v for some variable x in an expression e 
–  Replace all  free occurrences of x in e by v. 
–  In OCaml: written subst v x e 
–  In Math: written e{v/x} 

•  Function application is interpreted by substitution: 
!  (fun x -> fun y -> x + y) 1!
!= subst 1 x (fun y -> x + y)!
!= (fun y -> 1 + y)!
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val ::=  
 | fun x -> exp  functions are values 



Lambda Calculus Operational Semantics 
•  Substitution function (in Math):���

       x{v/x}  =  v      (replace the free  x by v)���
       y{v/x}  =  y      (assuming y ≠ x)���
(fun x -> exp){v/x}  = (fun x -> exp)    (x is bound in exp)���
(fun y -> exp){v/x}  = (fun y -> exp{v/x})   (assuming y ≠ x)���
     (e1 e2){v/x}  = (e1{v/x} e2{v/x})   (substitute everywhere) 

•  Examples:���
   x y {(fun z ->z)/y}   ⇒    x (fun z -> z)���

  (fun x -> x y){(fun z -> z) / y}  ⇒   (fun x -> x (fun z -> z))���

  (fun x -> x){(fun z -> z) / x}  ⇒  (fun x -> x)      // x is not free! 

Zdancewic     CIS 341: Compilers     8 



Free Variable Calculation 
•  An OCaml function to calculate the set of free variables in a lambda 

expression: 

•  A lambda expression e is closed if free_vars e returns 
VarSet.empty!

•  In mathematical notation:���

  fv(x)     =  {x}���
  fv(fun x -> exp)  =  fv(exp) \ {x}      (‘x’ is a bound in exp)���
  fv(exp1 exp2)  =  fv(exp1) ∪ fv(exp2) 
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let rec free_vars (e:exp) : VarSet.t =!
  begin match e with!
    | Var x -> VarSet.singleton x!
    | Fun(x, body) -> VarSet.remove x (free_vars body)!
    | App(e1, e2) -> VarSet.union (free_vars e1) (free_vars e2)!
  end!



Operational Semantics 
•  Specified using just two inference rules with judgments of the form 

exp ⇓  val 
–  Read this notation a as “program exp evaluates to value val” 
–  This is call-by-value semantics: function arguments are evaluated before 

substitution 
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v ⇓ v 

exp1 ⇓ (fun x -> exp3)   exp2 ⇓ v     exp3{v/x} ⇓ w 

exp1 exp2  ⇓ w 

“Values evaluate to themselves” 

“To evaluate function application: Evaluate the function to a value, evaluate the���
argument to a value, and then substitute the argument for the function. ” 



Adding Integers to Lambda Calculus 
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exp1 ⇓ n1  exp2 ⇓ n2 

exp1 + exp2  ⇓ (n1 ⟦+⟧ n2) 

exp ::=  
 | … 
 | n        constant integers   
 | exp1 + exp2     binary arithmetic operation 

val ::=  
 | fun x -> exp     functions are values 
 | n        integers are values 

n{v/x}   =  n     constants have no free vars. 
(e1 + e2){v/x}  = (e1{v/x} + e2{v/x})  substitute everywhere 

Object-level ‘+’ Meta-level ‘+’ 



How to Implement? 
•  Code in fun.ml shows: 
–  A substitution-based interpreter 
–  Two environment-based interpreters (one broken) 

•  We’ll come back to compilation after discussing 
typechecking…. 
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TYPE CHECKING 
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Ruling out ill-defined programs at compile time. 



Type Checking / Static Analysis 
•  Recall the interpreter from the Eval3 module: 
let rec eval env e =!
  match e with!
  | …!
  | Add (e1, e2) ->!
!  (match (eval env e1, eval env e2) with!
!     | (IntV i1, IntV i2) -> IntV (i1 + i2)!
!     | _ -> failwith "tried to add non-integers")!

  | …!

•  The interpreter might fail at runtime. 
–  Not all operations are defined for all values (e.g. 3/0,  3 + true, …) 

•  A compiler can’t generate sensible code for this 
case. 
–  A naïve implementation might “add” an integer and a pointer 

CIS 341: Compilers 14 



What to do? 
•  Don’t worry about it… e.g. C, C++ 

–  Result: segmentation faults, bus errors, etc. 

•  Make all operations total (i.e. defined everywhere)… e.g. Scheme / Perl 
–  3 + true  42, …       (language specifies behavior) 
–  Result: unpredictable answers 

•  Raise a “runtime type error”… e.g. Python, Ruby, and other dynamically 
typed languages 
–  Result: failure at deployment time 

•  Try to rule out ill-formed programs… e.g. Java, C#, ML, Haskell 
–  3 + true    compiler error: ���

“This expression has type bool but is here used with type int” 
–  Result: predictable programs, but it’s harder to “get programs running” 

•  How do you know you’ve ruled out all ill-formed programs? 
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Type Soundness 
•  Build a model of the programming language 

–  One model: an interpreter 
–  Another model: constructed in mathematics 
–  Usually defined via the abstract syntax 

•  Model defines where the language operations are partial 
–  Partiality is different for different languages: e.g. “foo” + “bar” is 

meaningful in Java but not OCaml 

•  Construct a function: well_typed : Ast -> unit!
–  When well_typed e succeeds, running e will definitely not trigger 

one of the undefined operation cases (i.e. e is type safe) 
–  When well_typed e aborts with an exception, running e might trigger 

an undefined operation (i.e. e is not type safe)  

•  Prove that the well_typed function is correct. 
–  Such proofs are sometimes difficult, but doable for real languages (e.g. 

SML, Java) 
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Typechecking 
•  How do we implement the function well_typed? 

•  Big idea: “approximate” the interpreter: 
–  Problem is partiality  in the language semantics as defined by the 

interpreter. 
–  Instead of interpreting the program, write a function called typecheck 

that computes a type for the program (rather than the answer obtained by 
running the program). 

–  Behavior of  typecheck is guided by what the interpreter would do. 

•  See “tc.ml” 
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Notes about this Typechecker 
•  In the interpreter, we only evaluate the body of a function when it's 

applied. 
•  In the typechecker, we always check the body of the function (even if 

it's never applied.) 
–  Because of this, we must assume the input has some type (say t1) and 

reflect this in the type of the function ���
(t1 -> t2). 

•  Dually, at a call site (e1 e2), we don't know what closure we're going 
to get.  
–  But we can calculate e1's type, check that e2 is an argument of the right 

type, and also determine what type e1 will return. 

•  Question:  Why is this an approximation? 
•  Question: What if well_typed always returns false? 



Defining Type Systems Mathematically 
•  In the OCaml implementation we have:  ���

             typecheck (env:environment) (e:exp):ty!
–  Where exp is the type of abstract syntax and environment is a list of 

var * ty pairs. 
–  The result of typecheck is a type  

•  We can abstract this function in math as a relation:���
The notation:   E ⊢ e : t      means   typecheck C e = t 
–  “In the environment E, program e is well-typed and has type t” 
–  “e : t”    is a type judgment 

•  Simple examples:    ⊢ 3 : int      ⊢ true : bool      ⊢ “hello” : string 

•  Bigger examples:     ⊢ (2 * 3) + 5 : int       ⊢ if (true) 3 else 4 : int  
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Type Judgments 
•  In the judgment:   E ⊢ e : t   

–  E is a typing environment or a type context 
–  E maps variables to types.  It is just a set of bindings of the form:   ���

x1 : t1, x2 : t2, …, xn : tn 

•  For example:      x : int, b : bool ⊢ if (b) 3 else x : int 

•  What do we need to know to decide whether “if (b) 3 else x” has type 
int in the environment x : int, b : bool? 
–  b must be a bool   i.e.   x : int, b : bool ⊢ b : bool 
–  3 must be an int   i.e.   x : int, b : bool ⊢ 3 : int 
–  x must be an int   i.e.   x : int, b : bool ⊢ x : int 
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Generalizing ‘if’  &  Inference Rules 
•  For any environment E, expressions e1, e2, e3, and type T the judgment     ���

   ���
      E ⊢ if (e1) e2 else e3 : T  ���

is true if    E ⊢ e1 : bool,    and    E ⊢ e2 : T,  and  E ⊢ e3 : T    are all true. 
•  More succinctly: we summarize this as an inference rule: 

•  This rule holds for any substitution of the syntactic metavariables E, e1, 
e2, e3, and T 
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E ⊢ e1 : bool   E ⊢ e2 : T     E ⊢ e3 : T 

E ⊢ if (e1) e2 else e3 : T  

Premises 

Conclusion 



Simply-typed Lambda Calculus 
•  For the language in “tc.ml” we have five inference rules: 

•  Note how these rules correspond to the code. 
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E ⊢ i : int 

E ⊢ e1 : int   E ⊢ e2 : int 

E ⊢ e1 + e2 : int 

x : T  ∈  E 

E ⊢ x : T 

E, x : T ⊢ e : S 

E ⊢ fun (x:T) -> e  : T -> S 

E ⊢ e1 : T -> S  E ⊢ e2 : T  

E ⊢ e1 e2 : S 

INT VAR ADD 

FUN APP 



Type Checking Derivations 
•  A derivation or proof tree has (instances of) judgments as its nodes and 

edges that connect premises to a conclusion according to an inference 
rule.   

•  Leaves of the tree are axioms (i.e. rules with no premises) 
–  Example: the INT rule is an axiom 

•  Goal of the typechecker: verify that such a tree exists. 
•  Example:  Find a tree for the following program using the inference 

rules on the previous slide: 

                                ⊢ (fun (x:int) -> x + 3) 5  : int 
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Example Derivation Tree  

•  Note: the OCaml function typecheck verifies the existence of this 
tree.  The structure of the recursive calls when running typecheck is 
the same shape as this tree!  

•  Note that  x : int  ∈  E is implemented by the function lookup!
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⊢ (fun (x:int) -> x + 3) 5  : int 

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int  

x : int ⊢ x + 3 : int 

x : int ⊢ x  : int x : int ⊢ 3  : int 

x : int  ∈  x : int 

APP 

INT 

INT VAR 

ADD 

FUN 


