Lecture 15

CIS 341: COMPILERS

Announcements

Midterm Exam:
— Graded and entered

* Project Grades:

— We need to propagate the grades from one team member to another.

— But: for Project 2 we forgot to ask for team.txt, so we need the team-
member information. See email/announcement on Piazza for
Instructions.

* Project 4 is available from the course web pages
— Due on Thursday, March 21st.
— As usual, start early and ask questions if you get stuck

— Note: revised version of LL intermediate representation to be more
compliant with “real” LLVM IR

Zdancewic CIS 341: Compilers

Midterm Exam Grade Distribution

* Average: ~77%
* Median: ~84%
e Std. Dev: ~20%
 Max: 99/100

1.5+

05+

Zdancewic CIS 341: Compilers

Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.

CLOSURE CONVERSION

Zdancewic CIS 341: Compilers

Compiling First-class Functions

« To implement first-class functions on a processor, there are two
problems:

— First: we must implement substitution of free variables
— Second: we must separate ‘code’ from ‘data’

e Closure Conversion:

— Eliminates free variables by packaging up the needed environment in a
data structure.

— Big idea: push the meta-level environment into the object-level

* Hoisting:

— Separates code from data, pulling closed code to the top level.

Zdancewic CIS 341: Compilers

Example of closure creation

e Recall the “add” function:
let add = fun x ->

funy -> x + vy

* Consider the inner function: fun y -> x + y

* When run the function application: add 4
the program builds a closure and returns it.
— The closure is a pair of the environment and a code pointer.

ptr -

Code(env, y, body) -

S

\

« The code pointer takes a pair of parameters: env and y

— The function code is (essentially):
fun (env, y) -> let x = nth env 1 in

CIS 341: Compilers

X t+y

Example of Closure Application

« To “invoke” a closure, the semantics of the IL must bake in the
projection of the environment and code point from the closure value.

« Atthe meta-level: App(el, e2)

Zdancewic CIS 341: Compilers

Representing Closures

* The simple closure conversion algorithm in cc.ml isnt very efficient:

— It stores all the values for variables in the environment, even if they aren’t
needed.

— It copies the environment values to a new tuple each time an inner
closure is created.

* There are many options:
— Store only the values for the free variables in the body of the closure.
— Share subcomponents of the environment to avoid copying

— Use vectors or arrays rather than linked structures (indexing into the
environment becomes more complicated)

CIS 341: Compilers

Array-based Closures with N-ary Functions

(fun (xy z) ->
(fun (n m) -> 6fun p -> «fun q ->n + z) x))

|
Closure A Closure B
X,Y,Z Note how free

n,m p variables are
“addressed”
relative to the
closure due to
shared env.

Closure A L nxt n m @

Kcy \\

xt | p

Closure B \
<de/ @

BACK TO TYPECHECKING

Zdancewic CIS 341: Compilers

Simply-typed Lambda Calculus

For the language in “tc.ml|” we have five inference rules:

INT VAR ADD
x: T € E Ere,:int Ere,:int
EFi:int EFx:T EFre, +e,:int
FUN APP
E,x:Tre:S EFe, :T->S Ere,:T
E+fun (xT)->e : T->S EFre e, :S

CIS 341: Compilers

11

Different Kinds of Judgments

So far, we've been using judgments of the form “e : T” to mean
expression e has type T

For statements, which don’t evaluate to values, the judgment form is
“s ok”, meaning that the evaluation of the statement s doesn't yield
any run-time failures.

Note how this difference mirrors the difference in syntax and
semantics

— expressions evaluate to values
— statements are evaluated for their side effects

(Sometimes we omit the keyword ‘ok’ since it is the same for all
statements.)

CIS 341: Compilers 12

Adding More Typing Rules

* ltis easy to add inference rules for other program constructs:

WHILE

E-e, :int Ersok

E - while (e;) s ok

VarDecl

Fre :T E x:TFsok

E-Tx=e;;s ok

ASNIGNT Er-x:T Ere:T

F-x=e ok

CIS 341: Compilers

Note: If the language has
Booleans, we should require:
Et+e, :bool.

Note: We add the
assumption x : T to the
context when checking e, — x
IS in scope in e,.

Note: We have a choice
about the statements vs.
expressions. We could
follow C-style and make
assignment an expression
with type ‘T’

Arrays

 Array constructs are not hard either, here is one possibility
* First: add a new type constructor: T][]

NEW E - e, : int F e, T e, is the size of the'newly
allocated array. e, is
initializes the elements of

E+new Tle]l(e,) :TI] the array.
NDEX] Ere,:TIl Ere,:int
F e, [e2] - T Note: These rules don’t
ensure that the array index
UPDATE is in bounds — that should

ErFe, :T[]] Ere,:int Erey:T be checked dynamically.

Et+e le,] =e; 0k

CIS 341: Compilers 14

Tuples

* ML-style tuples with statically known number of products:

 First: add a new type constructor: T, * ... *T_

WLl Evre T, ... Ere,:T

EF(e, ...,e)T * .0 *T

PROJ

CIS 341: Compilers

15

References

* ML-style references (note that ML uses only expressions)

* First, add a new type constructor: T ref

REF

DEREF

ASSIGN

EFe:T

Frrefe:Tref

Fre:Tref

E-le : T

Fre :Tref Etre,:T

CIS 341: Compilers

EF-e, :=e, :unit

Note the similarity with the
rules for arrays...

16

Recursive Definitions

Consider the ML factorial function:
let rec fact (x:int) : int =
if (x == 0) 1 else x * fact(x-1)

Note that the function name fact appears inside the body of fact'’s
definition!
To typecheck the body of fact, we must assume that the type of fact is
already known.

E, fact : int -> int, x 1 int F ey, @ int

E = int fact(int x) (,44,) : int -> int

In general: Collect the names and types of all mutually recursive
definitions, add them all to the context E before checking any of the
definition bodies.

Often useful to separate the “global context” from the “local context”

CIS 341: Compilers 17

oat.pdf (Project 4 version)

OAT TYPING RULES

Zdancewic CIS 341: Compilers

18

Beyond describing “structure”... describing “properties”
Types as sets
Subsumption

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers

19

What are types, anyway?

* A type is just a predicate on the set of values in a system.

— For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

— Equivalently, we can think of a type as just a subset of all values.

 For efficiency and tractability, the predicates are usually taken to be

very simple.

— Types are an abstraction mechanism

* We can easily add new types that distinguish different subsets of

values:
type tp =
IntT
PosT | NegT | ZeroT
BoolT
TrueT | FalseT
AnyT

CIS 341: Compilers

(*
(*
(*
(*
(*

type of integers ¥*)
refinements of ints *)
type of booleans *)
subsets of booleans *)
any value *)

20

Modifying the typing rules

« We need to refine the typing rules too...

* Some easy cases:
— Just split up the integers into their more refined cases:

P-INT

1 >0

N-INT

E+1:Pos

e Same for booleans:

CIS 341: Compilers

TRUE

1 <O

/ZERO

EFi:Neg

E - true : True

FALSE

E-O: Zero

F + false : False

21

What about “if”’?

* Two cases are easy:

IF-T| Ere, :True Ere,:T UmJEre :False Ere,:T

E-if (e;)e,elsee; : T E-if (e;)e,elsee; : T

* What happens when we don’t know statically which branch will be
taken?
 Consider the typechecking problem:

x:bool +if (x) 3 else -1 : ?

* The true branch has type Pos and the false branch has type Neg.
— What should be the result type of the whole if?

CIS 341: Compilers 22

Subtyping and Upper Bounds

If we think of types as sets of values, we have a natural inclusion
relation: Pos € Int

This subset relation gives rise to a subtype relation: Pos <: Int
Such inclusions give rise to a subtyping hierarchy:
A
T
Int Bool
ST o7

Neg Zero Pos True False

Given any two types T, and T,, we can calculate their /east upper
bound (LUB) according to the hierarchy.

— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any

— Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on

types.

CIS 341: Compilers

“1f” Typing Rule Revisited

* For statically unknown conditionals, we want the return value to be
the LUB of the types of the branches:

IF-BOOL

E-e :bool Ere,:T, Ere;:T,

Et+if (e,) e, else e; : LUB(T,,T,)

« Note that LUB(T,, T,) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T, or

type T,.
 In math notation, LUB(T1, T2) is sometimes written T, V T,
« LUB is also called the join operation.

CIS 341: Compilers

24

Subtyping Hierarchy
* A subtyping hierarchy:

~Any N
| Int | Bool

Neg Zero Pos True False

 The subtyping relation is a partial order:
— Reflexive: T<:T foranytypeT
— Transitive: T,<:T, andT,<:TythenT, <: T,
— Antisymmetric: ItT, <:T,and T, <:T, thenT, =T,

CIS 341: Compilers

25

Soundness of Subtyping Relations

« We don’t have to treat every subset of the integers as a type.
— e.g., we left out the type NonNeg

« A subtyping relation T, <: T, is sound if it approximates the underlying
semantic subset relation.

« Formally: write [T] for the subset of (closed) values of type T
— ie [Tl={v|Fv:T}
— e.g. [Zero] ={0}, [Pos] ={1, 2,3, ...}

« IfT, <:T, implies [T,] € [T,], thenT, <: T, is sound.
— e.g. Pos <:Intis sound, since {1,2,3,...} € {...,-3,-2,-1,0,1,2,3,...}

— e.g. Int <: Pos is not sound, since it is not the case that
{...,-3,-2,-1,0,1,2,3,...}& {1,2,3,...}

CIS 341: Compilers 26

Soundness of LUBs

* Whenever you have a sound subtyping relation, it follows that:
[LUB(T,, T,))I 2 [T,1 U [T,]
— Note that the LUB is an over approximation of the “semantic union”
— Example: [LUB(Zero, Pos)] =[Int] ={...,-3,-2,-1,0,1,2,3,...} 2
{0,1,2,3,...} ={0} U {1,2,3,...} = [Zero] U [Pos]

« Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

* It just so happens that LUBs on types <: Int correspond to +

ADD

Ere,:T;, Ere,:T, T,<Int T,<Int

EFe, +e,: T, VT,

CIS 341: Compilers 27

