
CIS 341: COMPILERS 
Lecture 15 



Announcements 
•  Midterm Exam: 

–  Graded and entered 

•  Project Grades: 
–  We need to propagate the grades from one team member to another. 
–  But: for Project 2 we forgot to ask for team.txt, so we need the team-

member information.  See email/announcement on Piazza for 
instructions. 

•  Project 4 is available from the course web pages 
–  Due on Thursday, March 21st. 
–  As usual, start early and ask questions if you get stuck 
–  Note: revised version of LL intermediate representation to be more 

compliant with “real” LLVM IR 
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Midterm Exam Grade Distribution 
•  Average: ~77% 
•  Median: ~84% 
•  Std. Dev: ~20% 
•  Max:   99/100 
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CLOSURE CONVERSION 
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Compiling lambda calculus to straight-line code. 
Representing evaluation environments at runtime.���



Compiling First-class Functions 

•  To implement first-class functions on a processor, there are two 
problems: 
–  First: we must implement substitution of free variables 
–  Second: we must separate ‘code’ from ‘data’ 

•  Closure Conversion:  
–  Eliminates free variables by packaging up the needed environment in a 

data structure. 
–  Big idea: push the meta-level environment into the object-level 

•  Hoisting: 
–  Separates code from data, pulling closed code to the top level. 
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Example of closure creation 
•  Recall the “add” function:���

let add = fun x -> fun y -> x + y!

•  Consider the inner function:  fun y -> x + y!

•  When run the function application:  add 4  
the program builds a closure and returns it. 
–  The closure is a pair of the environment and a code pointer. 

•  The code pointer takes a pair of parameters: env and y 
–  The function code is (essentially):���

 fun (env, y) -> let x = nth env 1 in x + y!
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ptr! Code(env, y, body)!

(4) code body 



Example of Closure Application 
•  To “invoke” a closure, the semantics of the IL must bake in the 

projection of the environment and code point from the closure value. 

•  At the meta-level:  App(e1, e2) 
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Representing Closures 
•  The simple closure conversion algorithm in cc.ml isn’t very efficient: 

–  It stores all the values for variables in the environment, even if they aren’t 
needed. 

–  It copies the environment values to a new tuple each time an inner 
closure is created. 

•  There are many options: 
–  Store only the values for the free variables in the body of the closure. 
–  Share subcomponents of the environment to avoid copying 
–  Use vectors or arrays rather than linked structures (indexing into the 

environment becomes more complicated) 
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Array-based Closures with N-ary Functions 
(fun (x y z) ->!
!(fun (n m) -> (fun p -> (fun q -> n + z) x)!

fun 2!
fun 1!

fun 0!

fun q!

2,2!1,0!

x,y,z 
n,m 

p 

nil! x! y! z!

nxt! n! m!

nxt! p! +!

Closure B 

env! code!

Closure A 

Closure B 

env! code!

Closure A 

app!

1,0!

Note how free 
variables are 
“addressed” 
relative to the 
closure due to 
shared env.   



BACK TO TYPECHECKING 
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Simply-typed Lambda Calculus 
•  For the language in “tc.ml” we have five inference rules: 
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E ⊢ i : int 

E ⊢ e1 : int   E ⊢ e2 : int 

E ⊢ e1 + e2 : int 

x : T  ∈  E 

E ⊢ x : T 

E, x : T ⊢ e : S 

E ⊢ fun (x:T) -> e  : T -> S 

E ⊢ e1 : T -> S  E ⊢ e2 : T  

E ⊢ e1 e2 : S 

INT VAR ADD 

FUN APP 



Different Kinds of Judgments 
•  So far, we’ve been using judgments of the form “e : T” to mean 

expression e has type T 
•  For statements, which don’t evaluate to values, the judgment form is ���

“s ok”, meaning that the evaluation of the statement s doesn’t yield 
any run-time failures. 

•  Note how this difference mirrors the difference in syntax and 
semantics 
–  expressions evaluate to values 
–  statements are evaluated for their side effects 

•  (Sometimes we omit the keyword ‘ok’ since it is the same for all 
statements.) 
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Adding More Typing Rules 
•  It is easy to add inference rules for other program constructs: 
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E ⊢ e1 : int    E ⊢ s ok 

E ⊢ while (e1) s  ok  

WHILE 
Note:  If the language has 
Booleans, we should require: 
E ⊢ e1 : bool .   

E ⊢ e1 : T    E, x : T ⊢ s ok 

E ⊢ T x = e1; s  ok  

VarDecl 

E ⊢ x : T    E ⊢ e : T 

E ⊢ x = e  ok  

ASSIGN 

Note:  We add the 
assumption x : T to the 
context when checking e2 – x 
is in scope in e2. 

Note:  We have a choice 
about the statements vs. 
expressions.  We could 
follow C-style and make 
assignment an expression 
with type ‘T’ 



Arrays 
•  Array constructs are not hard either, here is one possibility 
•  First: add a new type constructor:  T[] 
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E ⊢ e1 : int    E ⊢ e2 : T 

E ⊢ new T[e1](e2)  : T[]  

NEW 
e1 is the size of the newly 
allocated array.  e2 is 
initializes the elements of 
the array. 

E ⊢ e1 : T[]    E ⊢ e2 : int 

E ⊢ e1[e2]  : T  

INDEX 

Note:  These rules don’t 
ensure that the array index 
is in bounds – that should 
be checked dynamically. E ⊢ e1 : T[]    E ⊢ e2 : int   E ⊢ e3 : T 

E ⊢ e1[e2] = e3 ok  

UPDATE 



Tuples 
•  ML-style tuples with statically known number of products: 
•  First: add a new type constructor:  T1 * … * Tn 
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E ⊢ e1 : T1    …    E ⊢ en : Tn 

E ⊢ (e1, …, en) : T1 * … * Tn  

TUPLE 

E ⊢ e : T1 * … * Tn    1 ≤ i ≤ n 

E ⊢ #i e  :  Ti 

PROJ 



References 
•  ML-style references (note that ML uses only expressions) 
•  First, add a new type constructor: T ref 
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E ⊢ e : T 

E ⊢ ref e : T ref  

REF 

E ⊢ e : T ref 

E ⊢ !e  : T  

DEREF 

Note the similarity with the 
rules for arrays… E ⊢ e1 : T ref    E ⊢ e2 : T 

E ⊢ e1 := e2  : unit  

ASSIGN 



Recursive Definitions 
•  Consider the ML factorial function: 
!let rec fact (x:int) : int = !

  ! if (x == 0) 1 else x * fact(x-1)!

•  Note that the function name fact appears inside the body of fact’s 
definition! 

•  To typecheck the body of fact, we must assume that the type of fact is 
already known. 

      

•  In general: Collect the names and types of all mutually recursive 
definitions, add them all to the context E before checking any of the 
definition bodies. 

•  Often useful to separate the “global context” from the “local context” 
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E, fact : int -> int, x : int  ⊢ ebody : int 

E ⊢ int fact(int x) ( ebody) : int -> int 



OAT TYPING RULES 
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oat.pdf   (Project 4 version) 



TYPES, MORE GENERALLY 
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Beyond describing “structure”… describing “properties” 
Types as sets 
Subsumption���



What are types, anyway? 
•  A type is just a predicate on the set of values in a system. 

–  For example, the type “int” can be thought of as a boolean function that 
returns “true” on integers and “false” otherwise. 

–  Equivalently, we can think of a type as just a subset of all values. 

•  For efficiency and tractability, the predicates are usually taken to be 
very simple. 
–  Types are an abstraction mechanism 

•  We can easily add new types that distinguish different subsets of 
values: 

type tp =!
    | IntT                 (* type of integers *)!
    | PosT | NegT | ZeroT  (* refinements of ints *)!
    | BoolT                (* type of booleans *)!
    | TrueT | FalseT       (* subsets of booleans *)!
    | AnyT                 (* any value *)!
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Modifying the typing rules 
•  We need to refine the typing rules too… 
•  Some easy cases:    

–  Just split up the integers into their more refined cases: 

•  Same for booleans: 
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i > 0 

E ⊢ i : Pos 

P-INT 

i < 0 

E ⊢ i : Neg 

N-INT ZERO 

E ⊢ 0 : Zero 

TRUE 

E ⊢ true : True 

FALSE 

E ⊢ false : False 



What about “if”? 
•  Two cases are easy: 

•  What happens when we don’t know statically which branch will be 
taken? 

•  Consider the typechecking problem:���

                                   x:bool ⊢ if (x) 3 else -1 : ? 

•  The true branch has type Pos  and the false branch has type Neg. 
–  What should be the result type of the whole if? 
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E ⊢ e1 : True   E ⊢ e2 : T   

E ⊢ if (e1) e2 else e3 : T  

E ⊢ e1 : False   E ⊢ e3 : T   

E ⊢ if (e1) e2 else e3 : T  

IF-T IF-F 



Subtyping and Upper Bounds 
•  If we think of types as sets of values, we have a natural inclusion 

relation:   Pos ⊆ Int 
•  This subset relation gives rise to a subtype relation:  Pos <: Int 
•  Such inclusions give rise to a subtyping hierarchy: 

•  Given any two types T1 and T2, we can calculate their least upper 
bound (LUB) according to the hierarchy. 
–  Example:  LUB(True, False) = Bool,  LUB(Int, Bool) = Any 
–  Note: might want to add types for “NonZero”, “NonNegative”, and 

“NonPositive” so that set union on values corresponds to taking LUBs on 
types. 
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Any 

Int 

Neg Zero Pos 

Bool 

True False 

<: :> 

:>
 



“If” Typing Rule Revisited 
•  For statically unknown conditionals, we want the return value to be 

the LUB of the types of the branches: 

•  Note that LUB(T1, T2) is the most precise type (according to the 
hierarchy) that is able to describe any value that has either type T1 or 
type T2. 

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁  T2 
•  LUB is also called the join operation. 
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E ⊢ e1 : bool   E ⊢ e2 : T1    E ⊢ e3 : T2 

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)  

IF-BOOL 



Subtyping Hierarchy 
•  A subtyping hierarchy: 

•  The subtyping relation is a partial order: 
–  Reflexive:  T <: T    for any type T 
–  Transitive:   T1 <: T2  and T2 <: T3 then T1 <: T3 

–  Antisymmetric:  It T1 <: T2 and T2 <: T1 then T1 = T2 
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Any 

Int 

Neg Zero Pos 

Bool 

True False 

<: :> 

:>
 



Soundness of Subtyping Relations 
•  We don’t have to treat every subset of the integers as a type. 

–  e.g., we left out the type NonNeg 

•  A subtyping relation T1 <: T2 is sound if it approximates the underlying 
semantic subset relation. 

•  Formally:  write ⟦T⟧ for the subset of (closed) values of type T 
–  i.e. ⟦T⟧ = {v | ⊢ v : T} 
–  e.g.   ⟦Zero⟧ = {0},  ⟦Pos⟧ = {1, 2, 3, …} 

•  If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound. 
–  e.g.  Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...} 
–  e.g.  Int <: Pos is not sound, since it is not the case that 

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…} 
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Soundness of LUBs 
•  Whenever you have a sound subtyping relation, it follows that:    

     ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧ 
–  Note that the LUB is an over approximation of the “semantic union” 
–  Example:   ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇ 
     {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧ 

•  Using LUBs in the typing rules yields sound approximations of the 
program behavior (as if the IF-B rule). 

•  It just so happens that LUBs on types <: Int correspond to +   

CIS 341: Compilers 27 

E ⊢ e1 : T1   E ⊢ e2 : T2     T1 <: Int    T2 <: Int 

E ⊢ e1 + e2 : T1 ⋁ T2 

ADD 


