
CIS 341: COMPILERS
Lecture 17

Announcements

•  Project 4 is due tonight!
•  Project 5 Compiling objects in full Oat

–  Will be available soon
–  Due April 4th
–  Next Tuesday’s lecture will include discussion of the typechecking rules

for the project

•  Project 6 (Optimizations)
–  Due: April 16th

•  Project 7 (Oat programming)
–  “Due” April 23rd but no penalty if submitted as late as Friday, May 3rd

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

MODULARITY & ABSTRACTION

Zdancewic CIS 341: Compilers 3

Modules as Records
•  Records (or structs) bundle values together, mapping names to values.
•  Modules also bundle values together…

–  Except that modules are computed a load time
–  They are (usually) 2nd class (e.g. modules cannot be passed arguments to

functions). (OCaml v. 3.12 has support for first-class modules.)

•  But… module interfaces look like record types:
module PWC = struct!
 let names : string array = …!
 let passwords : string array = …!
 let check_password (n:string, p:string):bool = …!
 let is_name (n:string):bool = …!
end : !
sig!
 val check_password : string * string -> bool!
 val is_name : string -> bool!
end!

CIS 341: Compilers 4

Abstract Data Types
•  Key idea: abstract type

–  An identifier representing an unknown type

•  Abstract Data Type is
–  A type identifier (possibly parameterized) +
–  Declared operations on that type +
–  Concrete type definition (a representation) +
–  Concrete implementation of the operations

•  IntSet interface in OCaml:
module type IntSet = sig!
 type intset ! ! !(* Note: no type definition *)!
 val empty : intset!
 val insert : int -> intset -> intset!
 val has : int -> intset -> bool!
end!

CIS 341: Compilers 5

Interface

Implementation

IntSet example in OCaml

module IntSet1 : IntSet = struct!
 type intset = int list!
 let empty = []!
 let insert i s = i::s!
 let rec has = …!
end!

module IntSet2 : IntSet = struct!
 type intset = Leaf | Node of intset * int * intset!
 let empty = Leaf!
 let rec insert i s = …!
 let rec has = …!
end!

CIS 341: Compilers 6

This signature ascription seals
the modules with an abstract

type, hiding the representation
of intset.

Implementing Abstract Types
•  Representation of the abstract type is hidden from code other than the

implementation itself
–  CLU, Ada, Modula-3, ML

•  Because external code doesn’t know representation, it can’t violate the
abstraction boundary
–  e.g. break representation invariants

•  Positive: The same interface can be reimplemented multiple ways.
•  Positive: Module signatures can bundle together multiple related

abstract types.
•  Negative: Compiler doesn’t know representation either

–  When compiling external code it must use level of indirection
–  No stack allocation of abstract types

CIS 341: Compilers 7

Type Checking A Module
•  Module definitions must agree with the interface in the signature
•  Inside the module the concrete types are known

–  Extend the context with the definition (or substitute Si for Ii)

•  This rule also provides width subtyping

CIS 341: Compilers 8

E’ ⊢ e1 : T1 E’ ⊢ e2 : T2 … E’ ⊢ em : Tm E ’⊢ em+1 : Tm+1 …E’ ⊢ ek : Tk

E ⊢ :

Module

struct  
 type I1 = S1 !
 …  
 type In = Sn!
 let v1 : T1 = e1 !
 …  
 let vk : Tk = ek!
end !

sig  
 type I1 !
 …  
 type In  
 val v1 : T1 !
 …  
 val vm : Tm  
end

E’ = E, I1 = S1, I2 = S2, … In = Sn!

Classes
•  Fields or instance variables:

–  Values may differ from object to object (not shared)
–  Usually mutable
–  Presence inherited from the superclass

•  Methods:
–  (Function) values shared among all instances of a class
–  Code inherited from the superclass
–  Immutable (usually)
–  Usually take an implicit argument that refers to the object itself ���

(this or self)

•  All components have visibility modifiers
–  public/private/protected (subclass visible)

CIS 341: Compilers 9

Objects as Abstract Data Types (ADTs)
•  Objects: another way of extending records to ADTs
•  Source code for the class defines the concrete types and

implementation
•  Interface defined either implicitly (via public members) or explicitly

via interface ascription

CIS 341: Compilers 10

class IntSet1 implements IntSet {!
 private List<Integer> rep; !
 public IntSet1() {!

! rep = new LinkedList<Integer>();}!

 public IntSet1 insert(int i) {!
! rep.add(new Integer(i));!
! return this;}!

 public boolean has(int i) {!
! return rep.contains(new Integer(i));}!

 public int size() { return rep.size(); }!
}!

interface IntSet {!
 public IntSet insert(int i);!
 public boolean has(int i);!
 public int size();!
}!

Classes in C++/Java
•  Classes have private/public visibility qualifiers that hide part of the

object.
•  A class is a partially abstract type

–  (Note: do not confuse with Java’s ‘abstract’ keyword)

•  Interface file declares the representation
–  Method code is (mostly) hidden from the outside

•  Positive: This mechanism allows external code to know how much
space each object takes while still providing encapsulation
–  Objects can be stack allocated (good for cache coherence/performance)

•  Negative: Change to representation can require complete
recompilation, even of external code
–  C++ is notoriously slow to compile

•  Negative: Each class defines only a single type.

CIS 341: Compilers 11

IntSet example in C
•  intset.h:

•  intset.c:

CIS 341: Compilers 12

struct intset;!
extern struct intset *empty;!
struct intset *insert(int i, struct intset *s);!
int has(int i, struct intset *s);!

#include "intset.h"!

struct intset {struct intset *left;  
 int val; struct intset *right; };!

struct intset *empty = NULL;!

struct intset *insert(int i, struct intset *s) {…}!
int has(int i, struct intset *s) {…}!

No Abstraction in C
•  C provides hiding/encapsulation but no abstraction.

•  (Unchecked) Casts allow any client code to violate the representation
invariants of the module.

CIS 341: Compilers 13

COMPILING CLASSES AND
OBJECTS

Zdancewic CIS 341: Compilers 14

Code Generation for Objects
•  Methods:

–  Generating method body code is similar to functions/closures
–  Generating method calls requires dispatch

•  Fields:
–  Issues are the same as for records
–  Memory layout
–  Packing & alignment
–  Generating access code

•  Dynamic Types:
–  Checked downcasts
–  “instanceof” and similar type dispatch

CIS 341: Compilers 15

Multiple Implementations
•  The same interface can be implemented by multiple classes:

CIS 341: Compilers 16

interface IntSet {!
 public IntSet insert(int i);!
 public boolean has(int i);!
 public int size();!
}!

class IntSet1 implements IntSet {!
 private List<Integer> rep; !
 public IntSet1() {!
 rep = new LinkedList<Integer>();}!

 public IntSet1 insert(int i) {!
!rep.add(new Integer(i));!

 return this;}!

 public boolean has(int i) {!
 return rep.contains(new Integer(i));}!

 public int size() {return rep.size();}!
}!

class IntSet2 implements IntSet {!
 private Tree rep;!
 private int size; !
 public IntSet2() {!
 rep = new Leaf(); size = 0;}!

 public IntSet2 insert(int i) {!
!Tree nrep = rep.insert(i); !

 if (nrep != rep) {!
 rep = nrep; size += 1;!
 }!

!return this;}!

 public boolean has(int i) {!
!return rep.find(i);}!

 public int size() {return size;}!
}!

The Dispatch Problem
•  Consider a client program that uses the IntSet interface:

IntSet set = …;!
int x = set.size();!

•  Which code to call?
–  IntSet1.size ?
–  IntSet2.size ?

•  Client code doesn’t know the answer.
–  So objects must “know” which code to call.
–  Invocation of a method must indirect through the object.

CIS 341: Compilers 17

Compiling Objects
•  Objects contain a pointer to a

dispatch vector (also called a
virtual table or vtable) with
pointers to method code.

•  Code receiving set:IntSet
only knows that set has an
initial dispatch vector pointer
and the layout of that vector.

CIS 341: Compilers 18

rep:List!

IntSet1.insert!

IntSet1.has!

IntSet1.size!

rep:Tree!

size:int!

IntSet2.insert!

IntSet2.has!

IntSet2.size!

IntSet1
Dispatch Vector

IntSet2
Dispatch Vector

set!

IntSet

?

?.insert!

?.has!

?.size!

Dispatch Vector

Method Dispatch (Single Inheritance)
•  Idea: every method has its own small integer index.
•  Index is used to look up the method in the dispatch vector.

CIS 341: Compilers 19

interface A {!
 void foo();!
}!

interface B extends A {!
 void bar(int x);!
 void baz();!
}!

class C implements B {!
 void foo() {…} !
 void bar(int x) {…}!
 void baz() {…}!
 void quux() {…}!
}!

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
A <: B <: C

Dispatch Vector Layouts
•  Each interface and class gives rise to a dispatch vector layout.
•  Note that inherited methods have identical dispatch indices in the

subclass.

CIS 341: Compilers 20

A

A fields

foo!
Dispatch Vector

B

B fields

foo!

bar!

baz!

Dispatch Vector

C

C fields

foo!

bar!

baz!

quux!

Dispatch Vector

Method Arguments
•  Methods bodies are compiled just like top-level procedures…
•  … except that they have an implicit extra argument:���

this or self!
–  Historically (Smalltalk), these were called the “receiver object”
–  Method calls were thought of a sending “messages” to “receivers”

•  Note 1: the type of “this” is the class containing the method.
•  Note 2: references to fields inside <body> are compiled like

this.field!

CIS 341: Compilers 21

class IntSet1 implements IntSet {!
 … !
 IntSet1 insert(int i) { <body> }!
}!

IntSet1 insert(IntSet1 this, int i) { <body> }!

A method in a class...

… is compiled like this (top-level) procedure:

Method Invocation Compilation
•  Consider method invocation: C ⊢ ⟦e.f(e1,…,en)⟧

•  First, compile C ⊢ ⟦e⟧ to get a (reference to) an object
value.
–  Call this value obj

•  Push the method arguments on the stack (right-to-left).
•  Push the this argument (it’s just obj) on to the stack.
•  Compute dispatch vector address into a temporary

–  dv = [obj] (just dereference obj)

•  Execute: Call [dv + 4*i]
–  Where i is method f’s dispatch vector index i

CIS 341: Compilers 22

X86 Code For Dynamic Dispatch
•  Suppose b : B!
•  What code for b.bar(3)?

–  bar has index 1
–  Offset = 4 * 1

Mov eax, ⟦b⟧ !
Push 3 ! ! ! ! !// Method argument
Push eax! ! ! ! !// “this” pointer
Mov ebx, [eax]!
Mov ecx, [ebx + 4] !// D.V. + offset
Call ecx!

CIS 341: Compilers 23

B

B fields

foo!

bar!

baz!

__bar:!
 <code>!

D.V.
eax! ebx!

ecx!
b!

Sharing Dispatch Vectors
•  All instances of a class may share the same dispatch vector.

–  Assuming that methods are immutable.
•  Code pointers stored in the dispatch vector are available at link time –

dispatch vectors can be built once at link time.

•  One job of the object constructor is to fill in the object’s pointer to the
appropriate dispatch vector.

•  Note: The address of the D.V. is the run-time representation of the
object’s type.

CIS 341: Compilers 24

B

B fields

foo!

bar!

baz!

__bar:!
 <code>!

D.V.
b1!

B fields

b2! B

Inheritance: Sharing Code
•  Inheritance: Method code “copied down” from the superclass

–  If not overridden in the subclass

•  Works with separate compilation – superclass code not needed.

CIS 341: Compilers 25

B

B fields

foo!

bar!

baz!

__bar:!
 <code>!

D.V.

b!

C

C fields

foo!

bar!

baz!

quux!

D.V.
c!

MULTIPLE INHERITANCE

Zdancewic CIS 341: Compilers 26

Multiple Inheritance
•  C++: a class may declare more than one superclass.
•  Semantic problem: Ambiguity

class A { int m(); }!
class B { int m(); }!
class C extends A,B {…} // which m?

–  Same problem can happen with fields.
–  In C++, fields and methods can be duplicated when such ambiguity arises

(though explicit sharing can be declared too)

•  Java: a class may implement more than one interface.
–  No semantic ambiguity: if two interfaces contain the same method

declaration, then the class will implement a single method
interface A { int m(); }!
interface B { int m(); }!
class C implements A,B {int m() {…}} // only one m

CIS 341: Compilers 27

Dispatch Vector Layout Strategy Breaks
interface Shape {! ! ! ! ! ! ! !D.V.Index!
 void setCorner(int w, Point p); ! ! ! !0!
}!

interface Color {!
 float get(int rgb); ! ! ! ! ! ! ! !0!
 void set(int rgb, float value); ! ! ! !1!
}!

class Blob implements Shape, Color {!
 void setCorner(int w, Point p) {…} ! ! !0?!
 float get(int rgb) {…} ! ! ! ! ! ! !0?!
 void set(int rgb, float value) {…} ! ! !1?!
}!

CIS 341: Compilers 28

General Approaches
•  Can’t directly identify methods by position anymore.

•  Option 1: Use a level of indirection:
–  Map method identifiers to code pointers (e.g. index by method name)
–  Use a hash table
–  May need to do search up the class hierarchy

•  Option 2: Give up separate compilation
–  Use “sparse” dispatch vectors, or binary decision trees
–  Must know then entire class hierarchy

•  Option 3: Allow multiple D.V. tables (C++)
–  Choose which D.V. to use based on static type
–  Casting from/to a class may require run-time operations

•  Note: many variations on these themes
–  Different Java compilers pick different approaches…

CIS 341: Compilers 29

Option 1: Search + Inline Cache
•  For each class & interface keep a table mapping method names to

method code
–  Recursively walk up the hierarchy looking for the method name

•  Note: Identifiers are in quotes are not strings; in practice they are
some kind of unique identifier.

CIS 341: Compilers 30

__get:!
 <code>!

Blob

Blob fields

“Blob”!

super!

itable!

setCorner!

get!

set!

Class Info
s!

“setCorner”!

“get”!

“set”!

Interface Map

Inline Cache Code
•  Optimization: At call site, store class and code pointer in a cache

–  On method call, check whether class matches cached value
•  Compiling: Shape s = new Blob(); s.get();!
 Call site 434
•  Compiler knows that s is a Shape

–  Suppose EAX holds object pointer

•  Cached interface dispatch:
// push parameters
 Mov tmp, [EAX]!
 Cmp tmp, [cacheClass434]!
 Jnz __miss434!
 Call [cacheCode434]!
__miss434:!
 // do the slow search

CIS 341: Compilers 31

Blob

Blob fields

“Blob”!

super!

itable!

setCorner!

get!

set!

Class Info
s!

cacheClass434:!
 “Blob”!
cacheCode434:!
 <ptr>!

Table in data seg.

Option 1 variant 2: Hash Table
•  Idea: don’t try to give all methods unique indices

–  Resolve conflicts by checking that the entry is correct at dispatch

•  Use hashing to generate indices
–  Range of the hash values should be relatively small
–  Hash indices can be pre computed, but passed as an extra parameter

CIS 341: Compilers 32

interface Shape { ! ! ! ! ! !D.V.Index!
 void setCorner(int w, Point p);! !hash(“setCorner”) = 11!
}!

interface Color {!
 float get(int rgb); ! ! ! ! !hash(“get”) = 4!
 void set(int rgb, float value);! !hash(“set”) = 7!
}!

class Blob implements Shape, Color {!
 void setCorner(int w, Point p) {…} ! ! !11!
 float get(int rgb) {…} ! ! ! ! ! !4!
 void set(int rgb, float value) {…} ! ! !7!
}!

Dispatch with Hash Tables
•  What if there is a conflict?

–  Entries containing several methods point to code that resolves conflict (e.g. by
searching through a table based on class name)

•  Advantage:
–  Simple, basic code dispatch is ���

(almost) identical
–  Reasonably���

efficient

•  Disadvantage:
–  Wasted space in DV
–  Extra argument needed for resolution
–  Slower dispatch if conflict

CIS 341: Compilers 33

Blob

Blob fields

“Blob”!

super!

<empty>!

…!

get!

…!

set!

<empty>!

setCorner!

Class Info
s!

Fixed #
Of entries

Option 2 variant 1: Sparse D.V. Tables
•  Give up on separate compilation…
•  Now we have access to the whole class hierarchy.

•  So: ensure that no two methods in the same class are allocated the
same D.V. offset.
–  Allow holes in the D.V. just like the hash table solution
–  Unlike hash table, there is never a conflict!

•  Compiler needs to construct the method indices
–  Graph coloring techniques can be used to construct the D.V. layouts in a

reasonably efficient way (to minimize size)
–  Finding an optimal solution is NP complete!

CIS 341: Compilers 34

Example Object Layout
•  Advantage: Identical dispatch and performance to single-inheritance

case
•  Disadvantage: Must know entire class hierarchy

CIS 341: Compilers 35

Blob

Blob fields

“Blob”!

super!

setCorner!

set!

get!

Class Info
s!

Minimize #
Of entries

Option 2 variant 2: Binary Search Trees
•  Idea: Use conditional branches not indirect jumps
•  Each object has a class index (unique per class) as first word

–  Instead of D.V. pointer (no need for one!)
•  Method invocation uses range tests to select among n possible classes in lg n time

–  Direct branches to code at the leaves.

Shape x;!
x.SetCorner(…);!

 Mov eax, ⟦x⟧!
 Mov ebx, [eax]!
 Cmp ebx, 1!
 Jle __L1!
 Cmp ebx, 2!
 Je __CircleSetCorner!
 Jmp __EggSetCorner!
__L1:!
 Cmp ebx, 0!
 Je __BlobSetCorner!
 Jmp __RectangleSetCorner!

CIS 341: Compilers 36

Color Shape

RGBColor Blob Rectangle Circle Egg
 3 0 1 2 4

// interfaces

// classes

0 1 2 4

Decision tree

Search Tree Tradeoffs
•  Binary decision trees work well if the distribution of classes that may

appear at a call site is skewed.
–  Branch prediction hardware eliminates the branch stall of ~10 cycles (on

X86)

•  Can use profiling to find the common paths for each call site
individually
–  Put the common case at the top of the decision tree (so less search)
–  90%/10% rule of thumb: 90% of the invocations at a call site go to the

same class

•  Drawbacks:
–  Like sparse D.V.’s you need the whole class hierarchy to know how many

leaves you need in the search tree.
–  Indirect jumps can have better performance if there are >2 classes (at most

one mispredict)

CIS 341: Compilers 37

Option 3: Multiple Dispatch Vectors
•  Duplicate the D.V. pointers in the object representation.
•  Static type of the object determines which D.V. is used.

CIS 341: Compilers 38

interface Shape {! ! ! ! !D.V.Index!
 void setCorner(int w, Point p);! ! !0!
}!

interface Color {!
 float get(int rgb);! ! ! ! ! !0!

 void set(int rgb, float value);! ! !1!
}!

class Blob implements Shape, Color {!
 void setCorner(int w, Point p) {…}!
 float get(int rgb) {…} ! ! ! ! !!

 void set(int rgb, float value) {…} ! ! !!
}!

Shape
setCorner!
D.V.

Color
get!

set!

D.V.

get!

set!

setCorner!

Color

Blob, Shape

Multiple Dispatch Vectors
•  A reference to an object might have multiple “entry points”

–  Each entry point corresponds to a dispatch vector
–  Which one is used depends on the statically known type of the program.

Blob b = new Blob();!
Color y = b; // implicit cast!

•  Compile
Color y = b;
As
Mov y, ⟦b⟧ + 4 !

CIS 341: Compilers 39

get!

set!

setCorner!

y

b

Multiple D.V. Summary
•  Benefit: Efficient dispatch, same cost as for multiple inheritance
•  Drawbacks:

–  Cast has a runtime cost
–  More complicated programming model… hard to understand/debug?

•  What about multiple inheritance and fields?

CIS 341: Compilers 40

Multiple Inheritance: Fields
•  Multiple supertypes (Java): methods conflict (as we saw)
•  Multiple inheritance (C++): fields can also conflict
•  Location of the object’s fields can no longer be a constant offset from

the start of the object.

class Color {!
 float r, g, b; /* offsets: 4,8,12 */
}!
class Shape {!
 Point LL, UR; /* offsets: 4, 8 */
}!
class ColoredShape extends !
Color, Shape {!
 int z;!
}!

CIS 341: Compilers 41

D.V.!

r!

g!

b!

Color

D.V.!

LL!

UR!

Shape

ColoredShape ??

C++ approach:

•  Add pointers to the
superclass fields
–  Need to have multiple

dispatch vectors
anyway (to deal with
methods)

•  Extra indirection
needed to access
superclass fields

•  Used even if there is a
single superclass
–  Uniformity

CIS 341: Compilers 42

D.V.!

r!

g!

b!

Color

D.V.!

LL!

UR!

ColoredShape D.V.!

super!

super!

z!

Shape

Compiling Static Methods
•  Java supports static methods

–  Methods that belong to a class, not the instances of the class.
–  They have no “this” parameter (no receiver object)

•  Compiled exactly like normal top-level procedures
–  No slots needed in the dispatch vectors
–  No implicit “this” parameter

•  They’re not really methods
–  They can only access static fields of the class

CIS 341: Compilers 43

Compiling Constructors
•  Java, C++ classes can declare constructors that create new objects.

–  Initialization code may have parameters supplied to the constructor
–  e.g. new Color(r,g,b);!

•  Modula-3: object constructors take no parameters
–  e.g. new Color;!
–  Initialization would typically be done in a separate method.

•  Constructors are compiled just like static methods, except:
–  The “this” variable is initialized to a newly allocated block of memory big

enough to hold D.V. pointer + fields according to object layout
–  The D.V. pointer is initialized
–  The return value of the constructor is the (newly created) “this” pointer.

CIS 341: Compilers 44

Observe: Closure ≈ Single-method Object

•  Free variables
•  Environment pointer
•  Closure for function:
fun (x,y) ->  

x + y + a + b!

Fields
“this” parameter
Instance of this class:
class C {!
 int a, b;!
 int apply(x,y) { !
 x + y + a + b!
 }!
}!

CIS 341: Compilers 45

≈
≈

≈

D.V.!

a!

b!
__apply: <code>

env!

__apply!

a!

b!

__apply: <code>
__apply!

