
CIS 341: COMPILERS
Lecture 20

Announcements

•  Project 5 Compiling objects in full Oat
–  Available from the course web pages
–  Updated oat.pdf fixes a few typos (mentioned on Piazza)
–  Due April 8th

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

OPTIMIZATIONS

Zdancewic CIS 341: Compilers 3

A high-level tour of a variety of optimizations.

Why do we need optimizations?
•  To help programmers…

–  They write modular, clean, high-level programs
–  Compiler generates efficient, high-performance assembly

•  Programmers don’t write optimal code
•  High-level languages make avoiding redundant computation

inconvenient or impossible
–  e.g. A[i][j] = A[i][j] + 1!

•  Architectural independence
–  Optimal code depends on features not expressed to the programmer
–  Modern architectures assume optimization

•  Different kinds of optimizations:
–  Time: improve execution speed
–  Space: reduce amount of memory needed
–  Power: lower power consumption (e.g. to extend battery life)

CIS 341: Compilers 4

Some caveats
•  Optimization are code transformations:

–  They can be applied at any stage of the compiler
–  They must be safe – they can’t change the meaning of the program.

•  In general, optimizations require some program analysis:
–  To determine if the transformation really is safe
–  To determine whether the transformation is cost effective

•  This course: most common and valuable performance optimizations
–  See Muchnick (optional text) for ~10 chapters about optimization

CIS 341: Compilers 5

When to apply optimization
•  Inlining
•  Function specialization
•  Constant folding
•  Constant propagation
•  Value numbering
•  Dead code elimination
•  Loop-invariant code motion
•  Common sub-expression elimination
•  Strength Reduction
•  Constant folding & propagation
•  Branch prediction / optimization
•  Register allocation
•  Loop unrolling
•  Cache optimization

CIS 341: Compilers 6

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

Where to Optimize?
•  Usual goal: improve time performance
•  Problem: many optimizations trade space for time
•  Example: Loop unrolling

–  Idea: rewrite a loop like: ���
for(int i=0; i<100; i=i+1) {  
 s = s + a[i];  
}!

–  Into a loop like: ���
for(int i=0; i<99; i=i+2){  
 s = s + a[i];  
 s = s + a[i+1];  
}!

•  Tradeoffs:
–  Increasing codes space slows down whole program a tiny bit but speeds

up the loop
–  Frequently executed code with long loops, generally a win
–  Interacts with instruction cache and branch prediction hardware

•  Complex optimizations may never pay off!

CIS 341: Compilers 7

Writing Fast Programs In Practice
•  Pick the right algorithms and data structures.

–  These have a much bigger impact on performance that compiler
optimizations.

–  Reduce # of operations
–  Reduce memory accesses
–  Minimize indirection – it breaks working-set coherence

•  Then turn on compiler optimizations
•  Profile to determine program hot spots
•  Evaluate whether the algorithm/data structure design works
•  …if so: “tweak” the source code until the optimizer does “the right

thing” to the machine code

CIS 341: Compilers 8

Safety
•  Whether an optimization is safe depends on the programming

language semantics.
–  Languages that provide weaker guarantees to the programmer permit

more optimizations, but have more ambiguity in their behavior.
–  e.g. In Java tail-call optimization (that turns recursive function calls into

loops) is not valid.
–  e.g. In C, loading from initialized memory is undefined, so the compiler

can do anything.

•  Example: loop-invariant code motion
–  Idea: hoist invariant code out of a loop

•  Is this more efficient?
•  Is this safe?

CIS 341: Compilers 9

while (b) {!
 z = y/x;!
 …! ! !// y, x not updated!
}!

z = y/x;!
while (b) {!
 …! ! !// y, x not updated!
}!

Constant Folding
•  Idea: If operands are known at compile type, perform the operation

statically.

int x = (2 + 3) * y  int x = 5 * y!
b & false  false!

•  Performed at every stage of optimization…
•  Why?

–  Constant expressions can be created by translation or earlier
optimizations

•  Example: A[2] might be compiled to: ���
MEM[MEM[A] + 2 * 4]  MEM[MEM[A] + 8]!

CIS 341: Compilers 10

Constant Folding Conditionals

if (true) S ! ! ! S!
if (false) S ! ! ! ;!
if (true) S else S’ ! S!
if (false) S else S’  S’!
while (false) S ! ! ;!

if (2 > 3) S ! ! ! ;!

CIS 341: Compilers 11

Algebraic Simplification
•  More general form of constant folding

–  Take advantage of mathematically sound simplification rules

•  Identities:
–  a * 1  a ! ! !a * 0  0!
–  a + 0  a ! ! !a – 0  a!
–  b | false  b ! !b & true  b!

•  Reassociation & commutativity:
–  (a + 1) + 2  a + (1 + 2)  a + 3!
–  (2 + a) + 4  (a + 2) + 4  a + (2 + 4)  a + 6!

•  Strength reduction: (replace expensive op with cheaper op)
–  a * 4 ! ! ! !a << 2!
–  a * 7 ! ! ! !(a << 3) – a!
–  a / 32767 ! ! !(a >> 15) + (a >> 30)!

•  Note 1: must be careful with floating point (due to rounding)
•  Note 2: iteration of these optimizations is useful… how much?

CIS 341: Compilers 12

Constant Propagation
•  If the value is known to be a constant, replace the use of the variable

by the constant
•  Value of the variable must be propagated forward from the point of

assignment
–  This is a substitution operation

•  Example:
int x = 5;!
int y = x * 2;  int y = 5 * 2;  int y = 10;  !

int z = a[y]; ! int z = a[y]; ! int z = a[y]; int z = a[10];!

•  To be most effective, constant propagation should be interleaved with
constant folding

CIS 341: Compilers 13

Copy Propagation
•  If one variable is assigned to another, replace uses of the assigned

variable with the copied variable.
•  Need to know where copies of the variable propagate.
•  Interacts with the scoping rules of the language.

•  Example:
x = y; ! ! ! ! ! ! !x = y;!
if (x > 1) { ! ! ! ! !if (y > 1) {!
 x = x * f(x – 1); ! ! ! x = y * f(y – 1);!
}!! ! ! ! ! ! ! ! !}!

•  Can make the first assignment to x dead code (that can be eliminated).

CIS 341: Compilers 14

Dead Code Elimination
•  If a side-effect free statement can never be observed, it is safe to

eliminate the statement.

x = y * y // x is dead!!
…!! ! ! // x never used  ! !… !
x = z * z ! ! ! ! ! ! ! ! !x = z * z!

•  A variable is dead if it is never used after it is defined.
–  Computing such definition and use information is an important

component of compiler

•  Dead variables can be created by other optimizations…

CIS 341: Compilers 15

Unreachable/Dead Code
•  Basic blocks not reachable by any trace leading from the starting basic

block are unreachable and can be deleted.
–  Performed at the canonical IR or assembly level
–  Improves cache, TLB performance

•  Dead code: similar to unreachable blocks.
–  A value might be computed but never subsequently used.

•  Code for computing the value can be dropped
•  But only if it’s pure, i.e. it has no externally visible side effects

–  Externally visible effects: raising an exception, modifying a global
variable, going into an infinite loop, printing to standard output, sending a
network packet, launching a rocket

–  Note: Pure functional languages (e.g. Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

CIS 341: Compilers 16

Inlining
•  Replace a call to a function with the body of the function itself with

arguments rewritten to be local variables:
•  Example in OAT code:
int g(int x) { return x + pow(x); }!
int pow(int a) { int b = 1; int n = 0; !
 while (n < a) {b = 2 * b}; return b; }!



int g(int x) { int a = x; int b = 1; int n = 0;  
 while (n < a) {b = 2 * b}; tmp = b; return x + tmp;!

}
•  May need to rename variable names to avoid name capture

–  Example of what can go wrong?
•  Best done at the AST or relatively high-level IR.
•  When is it profitable?

–  Eliminates the stack manipulation, jump, etc.
–  Can increase code size.
–  Enables further optimizations

CIS 341: Compilers 17

Code Specialization
•  Idea: create specialized versions of a function that is called from

different places with different arguments.
•  Example: specialize function f in:
class A implements I { int m() {…} }!
class B implements I { int m() {…} }!
int f(I x) { x.m(); } ! !// don’t know which m!
A a = new A(); f(a);! ! !// know it’s A.m!
B b = new B(); f(b);! ! !// know it’s B.m!

•  f_A would have code specialized to dispatch to A.m!
•  f_B would have code specialized to dispatch to B.m!
•  You can also inline methods when the run-time type is known

statically
–  Often just one class implements a method.

CIS 341: Compilers 18

LOOP OPTIMIZATIONS

Zdancewic CIS 341: Compilers 19

Common Subexpression Elimination
•  In some sense it’s the opposite of inlining: fold redundant

computations together
•  Example:

a[i] = a[i] + 1 compiles to:
[a + i*4] = [a + i*4] + 1!
Common subexpression elimination removes the redundant add and

multiply:
t = a + i*4; [t] = [t] + 1!

•  For safety, you must be sure that the shared expression always has the
same value in both places!

CIS 341: Compilers 20

Unsafe Common Subexpression Elimination
•  Example: consider this OAT function:
unit f(int[] a, int[] b, int[] c) {!
!int j = …; int i = …; int k = …;!
!b[j] = a[i] + 1; c[k] = a[i]; return; !

}!

•  The following optimization that shares the expression a[i] is
unsafe… why?

unit f(int[] a, int[] b, int[] c) {!
!int j = …; int i = …; int k = …;!

 t = a[i];!
!b[j] = t + 1; c[k] = t; return; !

}!

CIS 341: Compilers 21

Loop Optimizations
•  Program hot spots often occur in loops.

–  Especially inner loops
–  Not always: consider operating systems code or compilers vs. a computer

game or word processor

•  Most program execution time occurs in loops.
–  The 90/10 rule of thumb holds here too. (90% of the execution time is

spent in 10% of the code)

•  Loop optimizations are very important, effective, and numerous
–  Also, concentrating effort to improve loop body code is usually a win

CIS 341: Compilers 22

Loop Invariant Code Motion (revisited)
•  Another form of redundancy elimination.
•  If the result of a statement or expression does not change during the

loop and it’s pure, it can be hoisted outside the loop body.
•  Often useful for array element addressing code

–  Invariant code not visible at the source level

for (i = 0; i < a.length; i++) { !
 /* a not modified in the body */ !
}!

t = a.length;!
for (i =0; i < t; i++) { !
 /* same body as above */
}!

CIS 341: Compilers 23

Hoisted loop-
invariant

expression

Strength Reduction (revisited)
•  Strength reduction can work for loops too
•  Idea: replace expensive operations (multiplies, divides) by cheap ones

(adds and subtracts)
•  For loops, create a dependent induction variable:

•  Example:
for (int i = 0; i<n; i++) { a[i*3] = 1; } // stride

by 3

int j = 0;!
for (int i = 0; i<n; i++) {!
 a[j] = 1;!
 j = j + 3; !// replace multiply by add
}!

CIS 341: Compilers 24

Loop Unrolling (revisited)
•  Branches can be expensive, unroll loops to avoid them.
for (int i=0; i<n; i++) { S }!

for (int i=0; i<n-3; i+=4) {S;S;S;S};!
for (; i<n; i++) { S } // left over iterations

•  With k unrollings, eliminates (k-1)/k conditional branches
–  So for the above program, it eliminates ¾ of the branches

•  Space-time tradeoff:
–  Not a good idea for large S or small n

•  Interacts with instruction caching, branch prediction

CIS 341: Compilers 25

