
CIS 341: COMPILERS
Lecture 22

Announcements

•  Projects 6 & 7
–  Information available soon (after late deadline for Project 5)
–  Should be significantly lighter work load than Project 5

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

CODE ANALYSIS

Zdancewic CIS 341: Compilers 3

Dataflow over CFGs
•  For precision, it is helpful to think of the “fall through” between

sequential instructions as an edge of the control-flow graph too.
–  In practice, identify instructions by offsets within basic blocks

CIS 341: Compilers 4

Move

Binop

If

Unop

Jump

Move

Binop

If

Unop

Jump

Basic block CFG

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

Example Dataflow Analyses
•  Liveness:

–  Computes, for each edge, the set of variables that are live across the edge.
–  A variable is live across the edge if it used before it is redefined on the

path originating at the edge.

•  Reaching Definitions:
–  Computes, for each edge, the set of variables whose definitions might

reach the edge.
–  Useful for constant propagation. (If there is only one reaching definition

to a node and it’s a constant, it’s OK to substitute the constant for uses.)

•  Available Expressions:
–  Computes, for each edge, the set of expressions whose values are the

same along all paths to the edge.

Zdancewic CIS 341: Compilers 5

A Worklist Algorithm for Livemeness
•  Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes
repeat until w is empty

 let n = w.pop() // pull a node off the queue
 old_in = in[n] // remember old in[n]

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 if (old_in != in[n]), // if in[n] has changed
 for all m in pred[n], w.push(m) // add to worklist

end

CIS 341: Compilers 6

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers 7

Available Expressions
•  Idea: want to perform common subexpression elimination:

–  a = x + 1 a = x + 1���
… …���
b = x + 1 b = a

•  This transformation is safe if x+1 means computes the same value at
both places (i.e. x hasn’t been assigned).
–  “x+1” is an available expression

•  Dataflow values:
–  in[n] = set of nodes whose values are available on entry to n
–  out[n] = set of nodes whose values are available on exit of n

CIS 341: Compilers 8

Available Expressions Step 1
•  Define the sets of values
•  Define gen[n] and kill[n] as follows:
•  Quadruple forms n: gen[n] kill[n] ���

a = b op c {n} - kill[n] uses[a] ���
a = [b] {n} - kill[n] uses[a]���
[a] = b Ø uses[[x]]���
 (for all x that may equal a)���
jump L Ø Ø ���
if a goto L1 else L2 Ø Ø ���
L: Ø Ø ���
a = f(b1,…,bn) Ø uses[a]∪ uses[[x]] ���
 (for all x)���
f(b1,…,bn) Ø uses[[x]] (for all x) ���
return a Ø Ø

CIS 341: Compilers 9

Note the need for “may
alias” information…

Note that functions are
assumed to be impure…

Available Expressions Step 2
•  Define the constraints that an available expressions solution must

satisfy.
•  out[n] ⊇ gen[n]���

“The expressions made available by n reach the end of the node”

•  in[n] ⊆ out[n’] if n’ is in pred[n]���
“The expressions available at the beginning of a node include those
that reach the exit of every predecessor”

•  out[n] ∪ kill[n] ⊇ in[n]���
“The expressions available on entry either reach the end of the node
or are killed by it.”
–  Equivalently: out[n] ⊇ in[n] - kill[n]

CIS 341: Compilers 10

Note similarities and
differences with
constraints for
“reaching definitions”.

Available Expressions Step 3
•  Convert constraints to iterated update equations:

•  in[n] := ∩n’∈pred[n]out[n’]

•  out[n] := gen[n] ∪ (in[n] - kill[n])

•  Algorithm: initialize in[n] and out[n] to {set of all nodes}
–  Iterate the update equations until a fixed point is reached

•  The algorithm terminates because in[n] and out[n] decrease only
monotonically
–  At most to a minimum of the empty set

•  The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CIS 341: Compilers 11

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers 12

Comparing Dataflow Analyses
•  Look at the update equations in the inner loop of the analyses
•  Liveness: (backward)

–  Let gen[n] = use[n] and kill[n] = def[n]

–  out[n] := = ∪n’∈succ[n]in[n’]

–  in[n] := gen[n] ∪ (out[n] - kill[n])

•  Reaching Definitions: (forward)

–  in[n] := ∪n’∈pred[n]out[n’]

–  out[n] := gen[n] ∪ (in[n] - kill[n])

•  Available Expressions: (forward)

–  in[n] := ∩n’∈pred[n]out[n’]

–  out[n] := gen[n] ∪ (in[n] - kill[n])

CIS 341: Compilers 13

Common Features
•  All of these analyses have a domain over which they solve constraints.

–  Liveness, the domain is sets of variables
–  Reaching defns., Available exprs. the domain is sets of nodes

•  Each analysis has a notion of gen[n] and kill[n]
–  Used to explain how information propagates across a node.

•  Each analysis is propagates information either forward or backward
–  Forward: in[n] defined in terms of predecessor nodes’ out[]
–  Backward: out[n] defined in terms of successor nodes’ in[]

•  Each analysis has a way of aggregating information
–  Liveness & reaching definitions take union (∪)
–  Available expressions uses intersection (∩)
–  Union expresses a property that holds for some path (existential)
–  Intersection expresses a property that holds for all paths (universal)

CIS 341: Compilers 14

(Forward) Dataflow Analysis Framework
A forward dataflow analysis can be characterized by:
1.  A domain of dataflow values L

–  e.g. L = the powerset of all variables
–  Think of ℓ∈L as a property, then “x ∈ ℓ” ���

means “x has the property”

2.  For each node n, a flow function Fn : L → L
–  So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n])
–  So: out[n] = Fn(in[n])
–  “If ℓ is a property that holds before the node n,���

 then Fn(ℓ) holds after n”

3.  A combining operator ⨅
–  “If we know either ℓ1 or ℓ2 holds on entry���

 to node n, we know at most ℓ1 ⨅ ℓ2”

–  in[n] := ⨅n’∈pred[n]out[n’]

CIS 341: Compilers 15

n

ℓ

Fn(ℓ)

n

ℓ1 ℓ2

ℓ1 ⨅ ℓ2

Generic Iterative (Forward) Analysis
for all n, in[n] := ⟙, out[n] := ⟙
repeat until no change

 for all n

 in[n] := ⨅n’∈pred[n]out[n’]

 out[n] := Fn(in[n])
 end

end

•  Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of
information.
–  Having “more” information enables more optimizations
–  “Maximum” amount could be inconsistent with the constraints.
–  Iteration refines the answer, eliminating inconsistencies

CIS 341: Compilers 16

Structure of L
•  The domain has structure that reflects the “amount” of information

contained in each dataflow value.
•  Some dataflow values are more informative than others:

–  Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1.
–  The dataflow value ℓ2 is “better” for enabling optimizations.

•  Example 1: for liveness analysis, smaller sets of variables are more
informative.
–  Having smaller sets of variables live across an edge means that there are

fewer conflicts for register allocation assignments.
–  So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2

•  Example 2: for available expressions analysis, larger sets of nodes are
more informative.
–  Having a larger set of nodes (equivalently, expressions) available means

that there is more opportunity for common subexpression elimination.
–  So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2

CIS 341: Compilers 17

L as a Partial Order
•  L is a partial order defined by the ordering relation ⊑.
•  A partial order is an ordered set.
•  Some of the elements might be incomparable.

–  That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1

•  Properties of a partial order:
–  Reflexivity: ℓ ⊑ ℓ
–  Transitivity: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2
–  Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2

•  Examples:
–  Integers ordered by ≤
–  Types ordered by <:
–  Sets ordered by ⊆ or ⊇

CIS 341: Compilers 18

Subsets of {a,b,c} ordered by ⊆

CIS 341: Compilers 19

{a,b,c}

{a,c}

{c}

{b,c}

{a,b}

 {a}

 { }

 {b}

ℓ1 ⊑ ℓ2

ℓ1

ℓ2

= ⟙

= ⟘

order ⊑ is ⊆ meet ⨅ is ∩ join ⨆ is ∪

Partial order presented as a Hasse diagram.
H

ei
gh

t i
s

3

Meets and Joins
•  The combining operator ⨅ is called the “meet” operation.
•  It constructs the greatest lower bound:

–  ℓ1 ⨅ ℓ2 ⊑ ℓ1 and ℓ1 ⨅ ℓ2 ⊑ ℓ2 ���
 “the meet is a lower bound”

–  If ℓ ⊑ ℓ1 and ℓ ⊑ ℓ2 then ℓ ⊑ ℓ1 ⨅ ℓ2 ���
 “there is no greater lower bound”

•  Dually, the ⨆ operator is called the “join” operation.
•  It constructs the least upper bound:

–  ℓ1 ⊑ ℓ1 ⨆ ℓ2 and ℓ2 ⊑ ℓ1 ⨆ ℓ2 ���
 “the join is an upper bound”

–  If ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ then ℓ1 ⨆ ℓ2 ⊑ ℓ ���
 “there is no smaller upper bound”

•  A partial order that has all meets and joins is called a lattice.
–  If it has just meets, it’s called a meet semi-lattice.

CIS 341: Compilers 20

Another Way to Describe the Algorithm
•  Algorithm repeatedly computes (for each node n):
•  out[n] := Fn(in[n])

•  Equivalently: out[n] := Fn(⨅n’∈pred[n]out[n’])

–  By definition of in[n]

•  We can write this as a simultaneous update of the vector of out[n]
values:
–  let xn = out[n]
–  Let X = (x1, x2, … , xn) it’s a vector of points in L

–  F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j]))

•  Any solution to the constraints is a fixpoint X of F
–  i.e. F(X) = X

CIS 341: Compilers 21

Iteration Computes Fixpoints
•  Let X0 = (⟙,⟙, …, ⟙)
•  Each loop through the algorithm apply F to the old vector:���

X1 = F(X0)���
X2 = F(X1)���
…

•  Fk+1(X) = F(Fk(X))
•  A fixpoint is reached when Fk(X) = Fk+1(X)

–  That’s when the algorithm stops.

•  Wanted: a maximal fixpoint
–  Because that one is more informative/useful for performing optimizations

CIS 341: Compilers 22

Monotonicity & Termination
•  Each flow function Fn maps lattice elements to lattice elements; to be

sensible is should be monotonic:
•  F : L → L is monotonic iff:���
ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2)
–  Intuitively: “If you have more precise information entering a node, then

you have more precise information leaving the node.”

•  Monotonicity lifts point-wise to the function: F : Ln → Ln
–  vector (x1, x2, … , xn) ⊑ (y1, y2, … , yn) iff xi ⊑ yi for each i

•  Note that F is consistent: F(X0) ⊑ X0
–  So each iteration moves at least one step down the lattice (for some

component of the vector)
–  … ⊑ F(F(X0)) ⊑ F(X0) ⊑ X0

•  Therefore, # steps needed to reach a fixpoint is at most the height H of
L times the number of nodes: O(Hn)

CIS 341: Compilers 23

Reaching Definitions is Monotone
•  Reaching definitions is a forward analysis.

•  in[n] = ∪n’∈pred[n]out[n’]

•  out[n] = gen[n] ∪ (in[n] - kill[n])

•  Top T = Ø, meet ⨅ =∪, join ⨆ is ∩, order ⊑ is ⊇

•  So: Fn[x] = gen[n] ∪ (x - kill[n]) ���
is it monotonic? Let x ⊑ z, so z = x ⨆ y for some y.

•  Fn[x ⨆ y] ���
 = gen[n] ∪ ((x ∩ y) - kill[n]) ���
 = gen[n] ∪ ((x - kill[n]) ∩ (y - kill[n]))���
 = (gen[n] ∪(x - kill[n])) ∩ (gen[n]∪(y - kill[n])���
 = Fn[x] ∩ Fn[y]���
 ⊆ Fn[x]

CIS 341: Compilers 24

QUALITY OF DATAFLOW
ANALYSIS SOLUTIONS

Zdancewic CIS 341: Compilers 25

Best Possible Solution
•  Suppose we have a control-flow

graph.
•  If there is a path p1 starting from the

root node (entry point of the
function) traversing the nodes ���
n0, n1, n2, … nk

•  The best possible information along
the path p1 is:���
ℓp1 = Fnk(…Fn2(Fn1(Fn0(T)))…)

•  Best solution at the output is some ���
ℓ ⊑ ℓp for all paths p.

•  Meet-over-paths (MOP) solution:���

⨅p∈paths_to[n]ℓp

CIS 341: Compilers 26

e = 1

if x > 0

e = y * 5 e = y * 3

e = y * x

1

2

3 4

5

Best answer here is: ���

F5(F3(F2(F1(T)))) ⨅ F5(F4(F2(F1(T))))

What about quality of iterative solution?

•  Does the iterative solution: out[n] = Fn(⨅n’∈pred[n]out[n’]) compute the
MOP solution?

•  MOP Solution: ⨅p∈paths_to[n] ℓp

•  Answer: Yes, if the flow functions distribute over ⨅
–  Distributive means: ⨅i Fn(ℓi) = Fn(⨅i ℓi)

–  Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in
the control flow graph might mean there are infinitely many paths…)

•  Not all analyses give MOP solution
–  They are more conservative.

CIS 341: Compilers 27

Reaching Definitions is MOP
•  Fn[x] = gen[n] ∪ (x - kill[n])

•  Does Fn distribute over meet ⨅ =∪?

•  Fn[x ⨅ y] ���
 = gen[n] ∪ ((x ∪ y) - kill[n]) ���
 = gen[n] ∪ ((x - kill[n]) ∪ (y - kill[n]))���
 = (gen[n] ∪(x - kill[n])) ∪ (gen[n]∪(y - kill[n])���
 = Fn[x] ∪ Fn[y]���

 = Fn[x] ⨅ Fn[y]

•  Therefore: Reaching Definitions with iterative analysis always
terminates with the MOP (i.e. best) solution.

CIS 341: Compilers 28

“Classic” Constant Propagation
•  Constant propagation can be formulated as a dataflow analysis.

•  Idea: propagate and fold integer constants in one pass:���
x = 1; x = 1;���
y = 5 + x; y = 6;���
z = y * y; z = 36;

•  Information about a single variable:
–  Variable is never defined.
–  Variable has a single, constant value.
–  Variable is assigned multiple values.

CIS 341: Compilers 29

Domains for Constant Propagation
•  We can make a constant propagation lattice L for one variable like

this:

•  To accommodate multiple variables, we take the product lattice, with
one element per variable.
–  Assuming there are three variables, x, y, and z, the elements of the

product lattice are of the form (ℓx, ℓy, ℓz).
–  Alternatively, think of the product domain as a context that maps variable

names to their “abstract interpretations”

•  What are “meet” and “join” in this product lattice?
•  What is the height of the product lattice?

CIS 341: Compilers 30

⟙ = multiple values

⟘ = never defined

…, -3, -2, -1, 0, 1, 2, 3, …

Flow Functions
•  Consider the node x = y op z
•  F(ℓx, ℓy, ℓz) = ?

•  F(ℓx, ⟙, ℓz) = (⟙, ⟙, ℓz)
•  F(ℓx, ℓy, ⟙) = (⟙, ℓy, ⟙)

•  F(ℓx, ⟘, ℓz) = (⟘, ⟘, ℓz)
•  F(ℓx, ℓy, ⟘) = (⟘, ℓy, ⟘)

•  F(ℓx, i, j) = (i op j, i, j)

•  Flow functions for the other nodes are easy…
•  Monotonic?
•  Distributes over meets?

CIS 341: Compilers 31

“If either input might have multiple values���
the result of the operation might too.”

“If either input is undefined���
the result of the operation is too.”

”If the inputs are known constants, ���
calculate the output statically.”

Iterative Solution

CIS 341: Compilers 32

z = 1 z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(⟘, 1, 2) ⨅ (⟘, 2, 1) = (⟘, ⟙, ⟙)

(⟙, ⟙, ⟙) iterative solution

MOP Solution ≠ Iterative Solution

CIS 341: Compilers 33

z = 1 z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(3, 1, 2) ⨅ (3, 2, 1) = (3, ⟙, ⟙) MOP solution

Dataflow Analysis: Summary
•  Many dataflow analyses fit into a common framework.
•  Key idea: Iterative solution of a system of equations over a lattice of

constraints.
–  Iteration terminates if flow functions are monotonic.
–  Solution is equivalent to meet-over-paths answer if the flow functions

distribute over meet (⨅).

•  Dataflow analyses as presented work for an “imperative” intermediate
representation.
–  The values of temporary variables are updated (“mutated”) during

evaluation.
–  Such mutation complicates calculations
–  SSA = “Single Static Assignment” eliminates this problem, by introducing

more temporaries – each one assigned to only once.
–  Next up: Converting to SSA, finding loops and dominators in CFGs

CIS 341: Compilers 34

