Lecture 22

CIS 341: COMPILERS

Announcements

* Projects 6 & 7
— Information available soon (after late deadline for Project 5)
— Should be significantly lighter work load than Project 5

 Final Exam:
— Tuesday, April 30" noon-2:00 pm
— Moore 216

Zdancewic CIS 341: Compilers

CODE ANALYSIS

Zdancewic CIS 341: Compilers

Dataflow over CFGs

 For precision, it is helpful to think of the “fall through” between
sequential instructions as an edge of the control-flow graph too.

— In practice, identify instructions by offsets within basic blocks

Mqve -~
Move K l \

Fall-through edges

Binop Binop in-edges
If l
l »|
Unop l Instr
Jump / l \
Unop
Basic block CFG l out-edges
Jump

CIS 341: Compilers ”EXpIOded” CFG

Example Dataflow Analyses

e |iveness:

— Computes, for each edge, the set of variables that are live across the edge.

— A variable is live across the edge if it used before it is redefined on the
path originating at the edge.

« Reaching Definitions:

— Computes, for each edge, the set of variables whose definitions might
reach the edge.

— Useful for constant propagation. (If there is only one reaching definition
to a node and it’s a constant, it's OK to substitute the constant for uses.)

 Available Expressions:

— Computes, for each edge, the set of expressions whose values are the
same along all paths to the edge.

Zdancewic CIS 341: Compilers

A Worklist Algorithm for Livemeness

« Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := @, out[n] := O
w = new queue with all nodes
repeat until w is empty

let n = w.pop() // pull a node off the queue
old_in = in[n] // remember old in[n]
out[n] := U vesuceminIn’]
in[n] := use[n] U (out[n] - def[n])
if (old_in !=in[n]), // if in[n] has changed

for all m in pred[n], w.push(m)// add to worklist
end

CIS 341: Compilers

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers

Available Expressions

 ldea: want to perform common subexpression elimination:
— a=x+1 a=x+1

B;x+1[> B;a

* This transformation is safe if x+1 means computes the same value at
both places (i.e. x hasn’t been assigned).

— “x+1" is an available expression

 Dataflow values:
— in[n] = set of nodes whose values are available on entry to n
— out[n] = set of nodes whose values are available on exit of n

CIS 341: Compilers

Available Expressions Step 1

 Define the sets of values
» Define gen[n] and kill[n] as follows:

* Quadruple forms n: gen[n] kill[n]
a=bopc {n} - kill[n] uses|a]
a = [b] {n} - kill[n] uses|a]
[al =b %) uses[[x]]
(for all x that may equal a)
!ump L O O Note the need for “may
if a goto LT else L2 %) %) alias” information...
L: %) %
a=fb,,...,b) %) uses[a] U uses| [x]]
(for all x)
f(b,,...,b,) %) uses[[x]] (for all x)
return a %) %

Note that functions are
assumed to be impure...

CIS 341: Compilers 9

Available Expressions Step 2

« Define the constraints that an available expressions solution must
satisfy.

* out[n] 2 gen[n]
“The expressions made available by n reach the end of the node”

* in[n] € out[n’] ifn’isin pred|n]
“The expressions available at the beginning of a node include those
that reach the exit of every predecessor”

« out[n] U kill[n] 2 in[n]
“The expressions available on entry either reach the end of the node
or are killed by it.”
— Equivalently: out[n] 2 in[n] - kill[n]
Note similarities and
differences with

constraints for
“reaching definitions”.

CIS 341: Compilers 10

Available Expressions Step 3

« Convert constraints to iterated update equations:

e In[n]:= ﬂ

* out[n] :=gen[n] U (in[n] - kill[n])

/
n’Epred[n]OuJ[[n]

 Algorithm: initialize in[n] and out[n] to {set of all nodes}
— lIterate the update equations until a fixed point is reached

 The algorithm terminates because in[n] and out[n] decrease only
monotonically

— At most to a minimum of the empty set

 The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CIS 341: Compilers 11

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers

Comparing Dataflow Analyses

Look at the update equations in the inner loop of the analyses

Liveness: (backward)
— Let gen[n] = use[n] and kill[n] = def[n]

— out[n] ;== vesuceinin(n’]

— in[n] := gen[n] U (out[n] - kill[n])

Reaching Definitions: (forward)
— in[n] := U v e predinOULIN’]

— out[n] := gen[n] U (in[n] - kill[n])

Available Expressions: (forward)
— in[n] := N v €predinOUtIN’]

— out[n] :=gen[n] U (in[n] - kill[n])

CIS 341: Compilers

Common Features

 All of these analyses have a domain over which they solve constraints.
— Liveness, the domain is sets of variables
— Reaching defns., Available exprs. the domain is sets of nodes
 FEach analysis has a notion of gen|[n| and kill[n]
— Used to explain how information propagates across a node.
 Each analysis is propagates information either forward or backward
— Forward: in[n]| defined in terms of predecessor nodes’ out||
— Backward: out[n]| defined in terms of successor nodes’ in||
« Each analysis has a way of aggregating information
— Liveness & reaching definitions take union (U)
— Available expressions uses intersection (M)
— Union expresses a property that holds for some path (existential)
— Intersection expresses a property that holds for all paths (universal)

CIS 341: Compilers 14

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

1. A domain of dataflow values £
— e.g. L =the powerset of all variables

— Think of € L as a property, then “x € 2"
means “x has the property”

2. For each node n, a flow function F,: L — L
— So far we've seen F(2) = gen[n] U (2 - kill[n])

— So: out[n] = F (in[n])
— “If 2 is a property that holds before the node n,
then F_(2) holds after n”

3. A combining operator M
— “If we know either 2, or £, holds on entry
to node n, we know at most 2, 1 £,”

— In[n] := ﬂn,epredmout[n’]

CIS 341: Compilers

15

Generic Iterative (Forward) Analysis

forall n, in[n] := T, out[n] :=T
repeat until no change

for all n
|n[n] = Hn/Epred[n]OUt[ﬂ/]
out[n] :=F_(in[n])
end
end

« Here, T € L (“top”) represents having the “maximum” amount of
information.

— Having “more” information enables more optimizations
— “Maximum” amount could be inconsistent with the constraints.
— lIteration refines the answer, eliminating inconsistencies

CIS 341: Compilers 16

Structure of L

The domain has structure that reflects the “amount” of information
contained in each dataflow value.

Some dataflow values are more informative than others:

— Write £, £ 2, whenever 2, provides at least as much information as £,.
— The dataflow value ¢, is “better” for enabling optimizations.

Example 1: for liveness analysis, smaller sets of variables are more
informative.

— Having smaller sets of variables live across an edge means that there are
fewer conflicts for register allocation assignments.

— So: 2,CQ ifandonlyif?, 2 ¢,

Example 2: for available expressions analysis, larger sets of nodes are
more informative.

— Having a larger set of nodes (equivalently, expressions) available means
that there is more opportunity for common subexpression elimination.

— So: 2, L, ifandonlyif2, € ¢,

CIS 341: Compilers 17

L as a Partial Order

« Lis a partial order defined by the ordering relation C.
« A partial order is an ordered set.

* Some of the elements might be incomparable.
— That is, there might be 2,, 2, € L such that neither 2, £ 2, nor , C 2,

 Properties of a partial order:
— Reflexivity: 2EQ
— Transitivity: 2,£2,and 2, C 2, implies 2, E ¢,
— Anti-symmetry: 2, £ 2, and 2, £ 2, implies ¢, = €,

« Examples:
— Integers ordered by <
— Types ordered by <:
— Sets ordered by € or 2

CIS 341: Compilers 18

Subsets of {a,b,c} ordered by &

Partial order presented as a Hasse diagram.

{a,b,c}=T

A /\ {b/c}

{a,c}

K\{C} /ﬂ Q2

t 2, CQ
E %
@—71 T~ (b
T~

=1

Height is 3

order C is & meet M is N join Uis U

CIS 341: Compilers

19

Meets and Joins

The combining operator 1 is called the “meet” operation.
* It constructs the greatest lower bound:
- ¢,ng EQ and ¢, n¢ C ¢

“the meet is a lower bound”

— IfeEQ and? C 2, then2 C 2, M&,
“there is no greater lower bound”

* Dually, the U operator is called the “join” operation.
* It constructs the least upper bound:
- 2 EQue and &, CE 2 18,
“the join is an upper bound”

— If2, C 0 and®, C 0 then2 UQ, C ¢
“there is no smaller upper bound”

A partial order that has all meets and joins is called a /attice.
— If it has just meets, it’s called a meet semi-lattice.

CIS 341: Compilers 20

Another Way to Describe the Algorithm

 Algorithm repeatedly computes (for each node n):
e out[n] :=F_(in[n])

» Equivalently: out[n] :=F (I'l out[n’])

n’Epred|n
— By definition of in[n]
« We can write this as a simultaneous update of the vector of out|[n]
values:
— let x,, = out[n]

— LetX =(xq, X,, ..., X,) it's avector of points in L

- F(X) - (F1(I_|jepred[1]OUt[j])/ F2<|_|jEpred[2]OUt[j])/ sy Fn(l_IjEpred[n]OUt[j]))

* Any solution to the constraints is a fixpoint X of F
— p.e. FX) =X

CIS 341: Compilers 21

Iteration Computes Fixpoints

« LletX,=(T,T,...,T)

 Each loop through the algorithm apply F to the old vector:
X; = F(X,)
X, = F(X;)

+ FI(X) = F(F(X)

« A fixpoint is reached when FXX) = F<+1(X)
— That’s when the algorithm stops.

« Wanted: a maximal fixpoint
— Because that one is more informative/useful for performing optimizations

CIS 341: Compilers 22

Monotonicity & Termination

 Each flow function F,, maps lattice elements to lattice elements; to be
sensible is should be monotonic:

 F: L — L is monotonic iff:
2, £ 2, implies that F(2,) C F(2,)
— Intuitively: “If you have more precise information entering a node, then
you have more precise information leaving the node.”

* Monotonicity lifts point-wise to the function: F : LM — "
— vector (X;, X5, ..., X,) E (Yq, Vo, ..., V,) iff x. By, foreach i

« Note that F is consistent: F(X,) t X,

— So each iteration moves at least one step down the lattice (for some
component of the vector)

— ... EF(F(Xp) E F(Xy) E X

» Therefore, # steps needed to reach a fixpoint is at most the height H of
L times the number of nodes: O(Hn)

CIS 341: Compilers 23

Reaching Definitions is Monotone

* Reaching definitions is a forward analysis.

In[n] = U v predinOUtN’]
« out[n] =gen[n] U (in[n] - kill[n])

« TopT=0, meetl | =U, join Llis N, orderC is 2

* So: F Ix] =gen[n] U (x - kill[n])
is it monotonic? Let xC z, so z=x Uy for somey.

F.Ix Uyl

= gen[n] U ((x N vy) - kill[n])

= gen[n] U ((x - klll[) N (y - kill[n]))

= (gen[n] U(x - kill[n])) N (gen[n] U (y - kill[n])
= F Ix] N F,lyl

CF [X]

CIS 341: Compilers

24

QUALITY OF DATAFLOW
ANALYSIS SOLUTIONS

Zdancewic CIS 341: Compilers

Best Possible Solution

Suppose we have a control-flow
graph.

If there is a path p, starting from the
root node (entry point of the
function) traversing the nodes

Ny, Ny, Ny, - Ny

The best possible information along
the path p; is:

21 = Folo Fo(Fy(Fo(M))...)

Best solution at the output is some
2L 2, for all paths p.

Meet-over-paths (MOP) solution:
[2,

p € paths_to[n]

CIS 341: Compilers

W

Best answer here is:
Fe(F5(Fo(F{(T)) T Fo(F4(F,(F,(T))))

26

CIS 341: Compilers

What about quality of iterative solution?

Does the iterative solution: out[n] = Fn(l_'nprred[n]OUt[n']) compute the
MOP solution?

MOP Solution: ['] /)

p €paths_to P

Answer: Yes, if the flow functions distribute over [1

— Distributive means: [. F (@) =F (. 2)

— Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in
the control flow graph might mean there are infinitely many paths...)

Not all analyses give MOP solution
— They are more conservative.

27

Reaching Definitions is MOP

F.[x] =gen[n] U (x - kill[n])

 Does F, distribute over meet [1 =U?

 F Ixny]
= gen[n] U ((x U vy) - kill[n])
= gen[n] U ((x - kill[n]) U (y - kill[n]))
= (gen[n] U(x - kill[n])) U (gen[n] U (y - kill[n])
= F Ix] UF [y]
- F I TTF

 Therefore: Reaching Definitions with iterative analysis always
terminates with the MOP (i.e. best) solution.

CIS 341: Compilers

28

“Classic” Constant Propagation

+ Constant propagation can be formulated as a dataflow analysis.

» ldea: propagate and fold integer constants in one pass:
x=1; x=1;
y=5+x; |:> y = 6;
z=y*y,; Z =36;

 Information about a single variable:
— Variable is never defined.
— Variable has a single, constant value.
— Variable is assigned multiple values.

CIS 341: Compilers

29

Domains for Constant Propagation

« We can make a constant propagation lattice L for one variable like
this:

T = multiple values

— X

e, -3,-2,-1,0,1,2,3, ...

W

1 = never defined
« To accommodate multiple variables, we take the product lattice, with
one element per variable.
— Assuming there are three variables, x, y, and z, the elements of the
product lattice are of the form (2, 2., 2,).

X/ *yr *z
— Alternatively, think of the product domain as a context that maps variable
names to their “abstract interpretations”

* What are “meet” and “join” in this product lattice?
« What is the height of the product lattice?

CIS 341: Compilers 30

Flow Functions

Consider the node x =y op z

F@, 2, 2,) =2

FQ, T, 8)=(T, T,0)
Fe, 2, T)=(T, 8, T) |
FQ, L, 0)=(L,1,0) |
Fe, 2, 1)=(L,2, 1)

=

FQ,1,))=@0op] 1]

_ “If either input might have multiple values
the result of the operation might too.”

__ “If either input is undefined
the result of the operation is too.”

__"If the inputs are known constants,

-—

calculate the output statically.”

Flow functions for the other nodes are easy...

Monotonic?
Distributes over meets?

CIS 341: Compilers

CIS 341: Compilers

Iterative Solution

(L, L, 1)
if x>0

(L, 1, y \f 1,1

y=2

¢,1,¢l

lu, 2, 1)

z=1

(L, 1,2)

(L, 2,1)

(L, 1,2)n(L, 2, 1)=(L, T,T)

X=Yy+2z

l (T, T, T) iterative solution

32

MOP Solution # Iterative Solution

(L, L, 1)
if x>0

(L, L,y \f 1,1
=1

y
(L1, 1) l lu, 2, 1)

y=2

z=1

MOP solution (3,1,2)n1(3,2,1)=@3, T, T)

CIS 341: Compilers

Dataflow Analysis: Summary

« Many dataflow analyses fit into a common framework.
« Key idea: lterative solution of a system of equations over a lattice of
constraints.
— lIteration terminates if flow functions are monotonic.

— Solution is equivalent to meet-over-paths answer if the flow functions
distribute over meet (N).

« Dataflow analyses as presented work for an “imperative” intermediate
representation.

— The values of temporary variables are updated (“mutated”) during
evaluation.

— Such mutation complicates calculations

— SSA = “Single Static Assignment” eliminates this problem, by introducing
more temporaries — each one assigned to only once.

— Next up: Converting to SSA, finding loops and dominators in CFGs

CIS 341: Compilers 34

