
CIS 341: COMPILERS 
Lecture 22 



Announcements 

•  Projects 6 & 7 
–  Information available soon (after late deadline for Project 5) 
–  Should be significantly lighter work load than Project 5 

•  Final Exam: 
–  Tuesday, April 30th noon-2:00 pm  
–  Moore 216 
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CODE ANALYSIS 
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Dataflow over CFGs 
•  For precision, it is helpful to think of the “fall through” between 

sequential instructions as an edge of the control-flow graph too. 
–  In practice, identify instructions by offsets within basic blocks 
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Example Dataflow Analyses 
•  Liveness: 

–  Computes, for each edge, the set of variables that are live across the edge.   
–  A variable is live across the edge if it used before it is redefined on the 

path originating at the edge. 

•  Reaching Definitions: 
–  Computes, for each edge, the set of variables whose definitions might 

reach the edge. 
–  Useful for constant propagation.  (If there is only one reaching definition 

to a node and it’s a constant, it’s OK to substitute the constant for uses.)   

•  Available Expressions: 
–  Computes, for each edge, the set of  expressions whose values are the 

same along all paths to the edge.  
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A Worklist Algorithm for Livemeness 
•  Use a FIFO queue of nodes that might need to be updated. 

for all n, in[n] := Ø, out[n] := Ø 
w = new queue with all nodes 
repeat until w is empty 

 let n = w.pop()      // pull a node off the queue 
   old_in = in[n]      // remember old in[n] 

   out[n] := ∪n’∈succ[n]in[n’] 

     in[n] := use[n] ∪ (out[n] - def[n]) 
   if (old_in != in[n]),     // if in[n] has changed  
      for all m in pred[n], w.push(m) // add to worklist 

end  
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AVAILABLE EXPRESSIONS 
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Available Expressions 
•  Idea: want to perform common subexpression elimination: 

–  a = x + 1   a = x + 1���
…    …���
b = x + 1   b = a 

•  This transformation is safe if x+1 means computes the same value at 
both places (i.e. x hasn’t been assigned). 
–  “x+1” is an available expression 

•  Dataflow values: 
–  in[n] = set of nodes whose values are available on entry to n 
–  out[n] = set of nodes whose values are available on exit of n 
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Available Expressions Step 1 
•  Define the sets of values 
•  Define gen[n] and kill[n] as follows: 
•  Quadruple forms n:   gen[n]    kill[n]   ���

a = b op c     {n} - kill[n]   uses[a]   ���
a = [b]      {n} - kill[n]   uses[a]���
[a] = b      Ø     uses[ [x] ]���
               (for all x that may equal a)���
jump L      Ø     Ø   ���
if a goto L1 else L2   Ø     Ø    ���
L:       Ø     Ø    ���
a = f(b1,…,bn)    Ø     uses[a]∪ uses[ [x] ]   ���
             (for all x)���
f(b1,…,bn)     Ø     uses[ [x] ]    (for all x)  ���
return a      Ø     Ø     
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Note the need for “may 
alias” information… 

Note that functions are 
assumed to be impure… 



Available Expressions Step 2 
•  Define the constraints that an available expressions solution must 

satisfy. 
•  out[n] ⊇ gen[n]���

“The expressions made available by n reach the end of the  node” 

•  in[n] ⊆ out[n’]    if n’ is in pred[n]���
“The expressions available  at the beginning of a node include those 
that reach the exit of every predecessor” 

•  out[n] ∪ kill[n] ⊇ in[n]���
“The expressions available on entry either reach the end of the node 
or are killed by it.” 
–  Equivalently:   out[n] ⊇ in[n] - kill[n] 
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Available Expressions Step 3 
•  Convert constraints to iterated update equations: 

•  in[n] := ∩n’∈pred[n]out[n’] 

•  out[n] := gen[n] ∪ (in[n] - kill[n]) 

•  Algorithm: initialize in[n] and out[n] to {set of all nodes}  
–  Iterate the update equations until a fixed point is reached 

•  The algorithm terminates because in[n] and out[n] decrease only 
monotonically  
–  At most to a minimum of the empty set 

•  The algorithm is precise because it finds the largest sets that satisfy the 
constraints. 
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GENERAL DATAFLOW ANALYSIS 
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Comparing Dataflow Analyses 
•  Look at the update equations in the inner loop of the analyses 
•  Liveness:         (backward) 

–  Let gen[n] = use[n] and kill[n] = def[n] 

–  out[n] := = ∪n’∈succ[n]in[n’] 

–  in[n] := gen[n] ∪ (out[n] - kill[n]) 

•  Reaching Definitions:      (forward) 

–  in[n] := ∪n’∈pred[n]out[n’] 

–  out[n] := gen[n] ∪ (in[n] - kill[n]) 

•  Available Expressions:      (forward) 

–  in[n] := ∩n’∈pred[n]out[n’] 

–  out[n] := gen[n] ∪ (in[n] - kill[n]) 

CIS 341: Compilers 13 



Common Features 
•  All of these analyses have a domain over which they solve constraints. 

–  Liveness, the domain is sets of variables 
–  Reaching defns.,  Available exprs. the domain is sets of nodes 

•  Each analysis has a notion of gen[n] and kill[n] 
–  Used to explain how information propagates across a node. 

•  Each analysis is propagates information either forward or backward 
–  Forward: in[n] defined in terms of predecessor nodes’ out[] 
–  Backward: out[n] defined in terms of successor nodes’ in[] 

•  Each analysis has a way of aggregating information 
–  Liveness & reaching definitions take union (∪) 
–  Available expressions uses intersection (∩) 
–  Union expresses a property that holds for some path (existential) 
–  Intersection expresses a property that holds for all paths (universal) 
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(Forward) Dataflow Analysis Framework 
A forward dataflow analysis can be characterized by: 
1.  A domain of dataflow values L   

–  e.g. L = the powerset of all variables 
–  Think of  ℓ∈L  as a property, then “x ∈ ℓ” ���

means “x has the property” 

2.  For each node n, a flow function Fn : L → L 
–  So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n]) 
–  So:  out[n] = Fn(in[n]) 
–  “If ℓ is a property that holds before the node n,���

 then Fn(ℓ) holds after n” 

3.  A combining operator ⨅ 
–  “If we know either ℓ1 or ℓ2 holds on entry���

 to node n, we know at most ℓ1 ⨅ ℓ2” 

–  in[n] := ⨅n’∈pred[n]out[n’] 
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Generic Iterative (Forward) Analysis 
for all n, in[n] := ⟙, out[n] := ⟙ 
repeat until no change 

 for all n 

    in[n] := ⨅n’∈pred[n]out[n’] 

    out[n] := Fn(in[n]) 
 end 

end 

•  Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of 
information. 
–  Having “more” information enables more optimizations 
–  “Maximum” amount could be inconsistent with the constraints. 
–  Iteration refines the answer, eliminating inconsistencies 
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Structure of L  
•  The domain has structure that reflects the “amount” of information  

contained in each dataflow value. 
•  Some dataflow values are more informative than others: 

–  Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1. 
–  The dataflow value ℓ2 is “better” for enabling optimizations. 

•  Example 1: for liveness analysis, smaller sets of variables are more 
informative. 
–  Having smaller sets of variables live across an edge means that there are 

fewer conflicts for register allocation assignments. 
–  So:   ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2  

•  Example 2: for available expressions analysis, larger sets of nodes are 
more informative. 
–  Having a larger set of nodes (equivalently, expressions) available means 

that there is more opportunity for common subexpression elimination. 
–  So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2  
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L as a Partial Order 
•  L is a partial order defined by the ordering relation ⊑. 
•  A partial order is an ordered set. 
•  Some of the elements might be incomparable. 

–  That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1 

•  Properties of a partial order: 
–  Reflexivity:   ℓ ⊑ ℓ 
–  Transitivity:  ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2 
–  Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2 

•  Examples: 
–  Integers ordered by ≤ 
–  Types ordered by <: 
–  Sets ordered by ⊆ or ⊇ 
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Subsets of {a,b,c} ordered by ⊆  
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Meets and Joins 
•  The combining operator ⨅ is called the “meet” operation. 
•  It constructs the greatest lower bound: 

–  ℓ1 ⨅ ℓ2   ⊑  ℓ1   and   ℓ1 ⨅ ℓ2   ⊑  ℓ2      ���
 “the meet is a lower bound” 

–  If ℓ   ⊑  ℓ1   and ℓ   ⊑  ℓ2  then ℓ   ⊑   ℓ1 ⨅ ℓ2         ���
 “there is no greater lower bound”  

•  Dually, the ⨆ operator is called the “join” operation. 
•  It constructs the least upper bound: 

–  ℓ1  ⊑  ℓ1 ⨆ ℓ2     and   ℓ2  ⊑  ℓ1 ⨆ ℓ2     ���
 “the join is an upper bound” 

–  If ℓ1   ⊑  ℓ   and ℓ2   ⊑  ℓ  then ℓ1 ⨆ ℓ2   ⊑  ℓ         ���
 “there is no smaller upper bound”  

•  A partial order that has all meets and joins is called a lattice. 
–  If it has just meets, it’s called a meet semi-lattice. 
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Another Way to Describe the Algorithm 
•  Algorithm repeatedly computes (for each node n): 
•  out[n] := Fn(in[n])   

•  Equivalently:   out[n] := Fn(⨅n’∈pred[n]out[n’]) 

–  By definition of in[n] 

•  We can write this as a simultaneous update of the vector of out[n] 
values: 
–  let xn = out[n] 
–  Let X = (x1, x2, … , xn)      it’s a vector of points in L 

–  F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j])) 

•  Any solution to the constraints is a fixpoint X of F 
–  i.e. F(X) = X 
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Iteration Computes Fixpoints 
•  Let X0 = (⟙,⟙, …, ⟙) 
•  Each loop through the algorithm apply F to the old vector:���

X1 = F(X0)���
X2 = F(X1)���
… 

•  Fk+1(X) = F(Fk(X)) 
•  A fixpoint is reached when Fk(X) = Fk+1(X) 

–  That’s when the algorithm stops. 

•  Wanted: a maximal fixpoint 
–  Because that one is more informative/useful for performing optimizations 
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Monotonicity & Termination 
•  Each flow function Fn maps lattice elements to lattice elements; to be 

sensible is should be monotonic: 
•  F : L → L is monotonic iff:���
ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2)  
–  Intuitively:  “If you have more precise information entering a node, then 

you have more precise information leaving the node.” 

•  Monotonicity lifts point-wise to the function: F : Ln → Ln  
–  vector (x1, x2, … , xn) ⊑  (y1, y2, … , yn)  iff xi ⊑ yi for each i 

•  Note that F is consistent: F(X0) ⊑ X0 
–  So each iteration moves at least one step down the lattice (for some 

component of the vector) 
–  … ⊑ F(F(X0)) ⊑ F(X0)  ⊑  X0  

•  Therefore, # steps needed to reach a fixpoint is at most the height H of 
L times the number of nodes:  O(Hn) 
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Reaching Definitions is Monotone 
•  Reaching definitions is a forward analysis. 

•  in[n] = ∪n’∈pred[n]out[n’] 

•  out[n] = gen[n] ∪ (in[n] - kill[n]) 

•  Top T = Ø, meet ⨅ =∪, join ⨆ is ∩, order ⊑  is ⊇  

•  So: Fn[x] = gen[n] ∪ (x - kill[n])   ���
is it monotonic?   Let x ⊑ z, so z = x ⨆ y for some y. 

•  Fn[x ⨆ y] ���
  =  gen[n] ∪ ((x ∩ y) - kill[n]) ���
  =  gen[n] ∪ ((x - kill[n]) ∩ (y - kill[n]))���
  =  (gen[n] ∪(x - kill[n])) ∩ (gen[n]∪(y - kill[n])���
  =  Fn[x] ∩ Fn[y]���
 ⊆ Fn[x]  
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QUALITY OF DATAFLOW 
ANALYSIS SOLUTIONS 
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Best Possible Solution 
•  Suppose we have a control-flow 

graph. 
•  If there is a path p1 starting from the 

root node (entry point of the 
function) traversing the nodes ���
n0, n1, n2, … nk 

•  The best possible information along 
the path p1 is:���
ℓp1 = Fnk(…Fn2(Fn1(Fn0(T)))…) 

•  Best solution at the output is some ���
ℓ ⊑ ℓp for all paths p. 

•  Meet-over-paths (MOP) solution:���

⨅p∈paths_to[n]ℓp 
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What about quality of iterative solution? 

•  Does the iterative solution: out[n] = Fn(⨅n’∈pred[n]out[n’]) compute the 
MOP solution? 

•  MOP Solution:  ⨅p∈paths_to[n] ℓp 

•  Answer:  Yes, if the flow functions distribute over ⨅ 
–  Distributive means: ⨅i Fn(ℓi) = Fn(⨅i ℓi) 

–  Proof is a bit tricky & beyond the scope of this class.  (Difficulty: loops in 
the control flow graph might mean there are infinitely many paths…) 

•  Not all analyses give MOP solution 
–  They are more conservative. 
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Reaching Definitions is MOP 
•  Fn[x] = gen[n] ∪ (x - kill[n])    

•  Does Fn distribute over meet ⨅ =∪? 

•  Fn[x ⨅ y] ���
  =  gen[n] ∪ ((x ∪ y) - kill[n]) ���
  =  gen[n] ∪ ((x - kill[n]) ∪ (y - kill[n]))���
  =  (gen[n] ∪(x - kill[n])) ∪ (gen[n]∪(y - kill[n])���
  =  Fn[x] ∪ Fn[y]���

  =  Fn[x] ⨅ Fn[y] 

•  Therefore: Reaching Definitions with iterative analysis always 
terminates with the MOP (i.e. best) solution. 
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“Classic” Constant Propagation 
•  Constant propagation can be formulated as a dataflow analysis. 

•  Idea: propagate and fold integer constants in one pass:���
x = 1;    x = 1;���
y = 5 + x;   y = 6;���
z = y * y;   z = 36; 

•  Information about a single variable: 
–  Variable is never defined. 
–  Variable has a single, constant value. 
–  Variable is assigned multiple values. 
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Domains for Constant Propagation 
•  We can make a constant propagation lattice L for one variable like 

this: 

•  To accommodate multiple variables, we take the product lattice, with 
one element per variable. 
–  Assuming there are three variables, x, y, and z, the elements of the 

product lattice are of the form (ℓx, ℓy, ℓz). 
–  Alternatively, think of the product domain as a context that maps variable 

names to their “abstract interpretations” 

•  What are “meet” and “join” in this product lattice? 
•  What is the height of the product lattice? 
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Flow Functions 
•  Consider the node x = y op z 
•  F(ℓx, ℓy, ℓz) = ? 

•  F(ℓx, ⟙, ℓz) = (⟙, ⟙, ℓz)  
•  F(ℓx, ℓy, ⟙) = (⟙, ℓy, ⟙) 

•  F(ℓx, ⟘, ℓz) = (⟘, ⟘, ℓz)  
•  F(ℓx, ℓy, ⟘) = (⟘, ℓy, ⟘) 

•  F(ℓx, i, j) = (i op j, i, j)                     

•  Flow functions for the other nodes are easy… 
•  Monotonic? 
•  Distributes over meets? 
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“If either input might have multiple values���
the result of the operation might too.” 

“If either input is undefined���
the result of the operation is too.” 

”If the inputs are known constants, ���
calculate the output statically.” 



Iterative Solution 
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MOP Solution ≠ Iterative Solution 
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Dataflow Analysis: Summary 
•  Many dataflow analyses fit into a common framework. 
•  Key idea: Iterative solution of a system of equations over a lattice of 

constraints. 
–  Iteration terminates if flow functions are monotonic. 
–  Solution is equivalent to meet-over-paths answer if the flow functions 

distribute over meet (⨅). 

•  Dataflow analyses as presented work for an “imperative” intermediate 
representation. 
–  The values of temporary variables are updated (“mutated”) during 

evaluation. 
–  Such mutation complicates calculations 
–  SSA = “Single Static Assignment” eliminates this problem, by introducing 

more temporaries – each one assigned to only once. 
–  Next up: Converting to SSA, finding loops and dominators in CFGs 
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