
CIS 341: COMPILERS 
Lecture 23 



Announcements 

•  Projects 6 
–  Available later today 
–  Due Next Thursday 

•  Project 7 
–  Available early next week (Monday) 
–  Due: May 5th 

•  Final Exam: 
–  Tuesday, April 30th noon-2:00 pm  
–  Moore 216 
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Dataflow Analysis: Summary 
•  Many dataflow analyses fit into a common framework. 
•  Key idea: Iterative solution of a system of equations over a lattice of 

constraints. 
–  Iteration terminates if flow functions are monotonic. 
–  Solution is equivalent to meet-over-paths answer if the flow functions 

distribute over meet (⨅). 

•  Dataflow analyses as presented work for an “imperative” intermediate 
representation. 
–  The values of temporary variables are updated (“mutated”) during 

evaluation. 
–  Such mutation complicates calculations 
–  SSA = “Single Static Assignment” eliminates this problem, by introducing 

more temporaries – each one assigned to only once. 
–  Next up: Converting to SSA, finding loops and dominators in CFGs 
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LOOPS AND DOMINATORS 
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Loops in Control-flow Graphs 
•  Taking into account loops is important for optimizations. 

–  The 90/10 rule applies, so optimizing loop bodies is important 

•  Should we apply loop optimizations at the AST level or at a lower 
representation? 
–  Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them. 

•  Loops may be hard to recognize at the quadruple IR level. 
–  Many kinds of loops: while, do/while, for, continue, goto… 

•  Problem: How do we identify loops in the control-flow graph? 
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Definition of a Loop 
•  A loop is a set of nodes in the control flow graph. 

–  One distinguished entry point called the header 

•  Every node is reachable ���
from the header &���
the header is reachable ���
from every node. 
–  A loop is a strongly ���

connected component 

•  No edges enter the loop ���
except to the header 

•  Nodes with outgoing edges ���
are called loop exit nodes 
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Nested Loops 
•  Control-flow graphs may contain many loops 
•  Loops may contain other loops: 
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Control Tree: 

The control tree ���
depicts the nesting���
structure of the ���
program. 



Control-flow Analysis 
•  Goal: Identify the loops and nesting structure of the CFG. 

•  Control flow analysis is based on the idea of dominators: 
•  Node A dominates node B if the only way to reach B from the start 

node is through node A. 

•  An edge in the graph ���
is a back edge if the ���
target node dominates���
the source node. 

•  A loop contains at least���
one back edge.���
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Dominator Trees 
•  Domination is transitive:  

–  if A dominates B and B dominates C then A dominates C 

•  Domination is anti-symmetric:  
–  if A dominates B and B dominates A then A = B 

•  Every flow graph has a dominator tree 
–  The Hasse diagram of the dominates relation 
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Dominator Dataflow Analysis 
•  We can define Dom[n] as a forward dataflow analysis. 

–  Using the framework we saw earlier:  Dom[n] = out[n] where: 

•  “A node B is dominated by another node A if A dominates all of the 
predecessors of B.” 

–  in[n] := ∩n’∈pred[n]out[n’] 

•  “Every node dominates itself.” 
–  out[n] := in[n]  ∪ {n} 

•  Formally:  L = set of nodes ordered by ⊆ 
–  T = {all nodes} 
–  Fn(x) = x ∪ {n} 
–  ⨅  is ∩  

•  Easy to show monotonicity and that Fn distributes over meet. 
–  So algorithm terminates and is MOP 

CIS 341: Compilers 10 



Improving the Algorithm 
•  Dom[b] contains just those nodes along the path in the dominator tree 

from the root to b: 
–  e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7} 
–  There is a lot of sharing among the nodes 

•  More efficient way to represent Dom sets is���
to store the dominator tree. 
–  doms[b] = immediate dominator of b 
–  doms[8] = 4, doms[7] = 5 

•  To compute Dom[b] walk through doms[b] 
•  Need to efficiently compute intersections���

 of Dom[a] and Dom[b] 
–  Traverse up tree, looking for least common ���

ancestor: 
–  Dom[8] ∩Dom[7] = Dom[4] 

•  See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy 
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Completing Control-flow Analysis 
•  Dominator analysis identifies back edges: 

–  Edge n  h where h dominates n 

•  Each back edge has a natural loop: 
–  h is the header 
–  All nodes reachable from h that also reach���

n without going through h 

•  For each back edge n  h, find the natural loop: 
–  {n’ | n is reachable from n’ in G – {h}} ∪ {h} 

•  Two loops may share the same header: ���
merge them 

•  Nesting structure of loops is determined by set inclusion 
–  Can be used to build the control tree  
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Example Natural Loops 
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Uses of Control-flow Information 
•  Loop nesting depth plays an important role in optimization heuristics. 

–  Deeply nested loops pay off the most for optimization. 

•  Need to know loop headers / back edges for doing 
–  loop invariant code motion 
–  loop unrolling 

•  Dominance information also plays a role in converting to SSA form 
–  Used internally by LLVM to do register allocation. 
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REVISITING SSA 
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Single Static Assignment (SSA) 
•  LLVM IR names (via %uids) all intermediate values computed by the 

program. 
•  It makes the order of evaluation explicit. 
•  Each %uid is assigned to only once 

–  Contrast with the mutable quadruple form 
–  Note that dataflow analyses had these kill[n] sets because of updates to 

variables… 

•  Naïve implementation of phase2: map %uids to stack slots 
•  Better implementation: map %uids to registers (as much as possible) 

•  Question: How do we convert a source program to make maximal use 
of %uids, rather than alloca-created storage? 
–  two problems: control flow & location in memory 
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Alloca vs. %UID 
•  Current compilation strategy: 

•  Directly map source variables into %uids? 

•  Does this always work? 
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int x = 3;!
int y = 0;!
x = x + 1;!
y = x + 2;!

%x = alloca i32!
%y = alloca i32!
store i32* %x, 3!
store i32* %y, 0!
%x1 = load %i32* %x!
%tmp1 = add i32 %x1, 1!
store i32* %x, %tmp1!
%x2 = load %i32* %x!
%tmp2 = add i32 %x2, 2 !
store i32* %y, %tmp2!

int x = 3;!
int y = 0;!
x = x + 1;!
y = x + 2;!

int x1 = 3;!
int y1 = 0;!
x2 = x1 + 1;!
y2 = x2 + 2;!

%x1 = add i32 3, 0!
%y1 = add i32 0, 0!
%x2 = add i32 %x1, 1!
%y2 = add i32 %x2, 2!



What about If-then-else? 
•  How do we translate this into SSA? 

•  What do we put for ???!
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int y = …!
int x = …!
int z = …!
if (p) {!
  x = y + 1;!
} else {!
  x = y * 2;!
}!
z = x + 3;!

entry:!
  %y1 = …!
  %x1 = …!
  %z1 = …!
  %p = icmp …!
  br i1 %p, label %then, label %else !
then:!
  %x2 = add i32 %y1, 1!
  br label %merge!
else:!
  %x3 = mult i32 %y1, 2!
merge:!
  %z2 = %add i32 ???, 3!



Phi Functions 
•  Solution: φ functions  

–  Fictitious operator, used only for analysis  
•  implemented by Mov at x86 level 

–  Chooses among different versions of a variable based on the path by 
which control enters the phi node.���
%uid = phi <ty>  v1, <label1>, … , vn, <labeln>	
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int y = …!
int x = …!
int z = …!
if (p) {!
  x = y + 1;!
} else {!
  x = y * 2;!
}!
z = x + 3;!

entry:!
  %y1 = …!
  %x1 = …!
  %z1 = …!
  %p = icmp …!
  br i1 %p, label %then, label %else !
then:!
  %x2 = add i32 %y1, 1!
  br label %merge!
else:!
  %x3 = mult i32 %y1, 2!
merge:!
  %x4 = phi i32 %x2, %then, %x3, %else!
  %z2 = %add i32 %x4, 3!



Phi Nodes and Loops 
•  Importantly, the %uids on the right-hand side of a phi node can be 

defined “later” in the control-flow graph. 
–  Means that %uids can hold values “around a loop” 

–  Scope of %uids is defined by dominance (discussed soon) 
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entry:!
  %y1 = …!
  %x1 = …!
  br label %body!

body:!
  %x2 = phi i32 %x1, %entry, %x3, %body!
  %x3 = add i32 %x2, %y1!
  %p = icmp slt i32, %x3, 10!
  br i1 %p, label %body, label %after!

after:!
  …  !



Alloca Promotion 
•  Not all source variables can be allocated to registers 

–  If the address of the variable is taken (as permitted in C, for example) 
–  If the address of the variable “escapes” (by being passed to a function) 

•  An alloca instruction is called promotable if neither of the two 
conditions above holds 

•  Happily, most local variables declared in source programs are 
promotable 
–  That means they can be register allocated 
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entry:!
  %x = alloca i32        // %x cannot be promoted!
  %y = call malloc(i32 4)!
  store i32** %y, %x     // store the pointer into the heap!

entry:!
  %x = alloca i32        // %x cannot be promoted!
  %y = call foo(i32* %x) // foo may store the pointer into the heap!



Converting to SSA: Overview 
•  Start with the ordinary control flow graph that uses allocas 

–  Identify “promotable” allocas 

•  Compute dominator tree information 
•  Calculate def/use information for each such allocated variable 
•  Insert φ functions for each variable at necessary “join points” 

•  Replace loads/stores to alloc’ed variables with freshly-generated 
%uids  

•  Eliminate the now unneeded load/store/alloca instructions. 
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Where to Place φ functions?  
•  Need to calculate the “Dominance Frontier” 

•  Node A strictly dominates node B if A dominates B and A ≠ B. 

•  The dominance frontier of a node B is the set of all CFG nodes y such 
that B dominates a predecessor of y but does not strictly dominate y 

•  Write DF[n] for the dominance frontier of node n. 
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Dominance Frontiers 
•  Example of a dominance frontier calculation results 
•  DF[1] = {},   DF[2] = {2},   DF[3] = {2},  DF[4] = {1}, DF[5] = {8,0},���

DF[6] = {8},  DF[7] = {0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {} 
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Algorithm For Computing DF[n] 
•  Assume that doms[n] stores the dominator tree (so that ���

doms[n] is the immediate dominator of n in the tree) 

for all nodes b  
 if #(pred[b]) ≥ 2 
  for each p ∈pred[b] 
   runner := p 
   while (runner ≠ doms[b]) 
    DF[runner] := DF[runner] ∪ {b}���
         runner := doms[runner] 
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Insert φ at Join Points 
•  Lift the DF[n] to a set of nodes N in the obvious way:���

DF[N] = ∪n∈NDF[n] 

•  Suppose that at variable x is defined at a set of nodes N. 
•  DF0[N] = N���

DFi[N] = DF[DFi-1[N] ∪ N] 
•  Let J[N] be the least fixed point of the sequence:���

DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆… 
–  That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N] 

•  J[N] is called the “join points” for the set N 
•  We insert φ functions for the variable x at each such join point. 

–  x  = φ(x, x, …, x);   (one “x” argument for each predecessor of the node) 
–  In practice, J[N] is never directly computed, instead you use a worklist 

algorithm that keeps adding nodes for  DFk[N] until there are no changes. 
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