
CIS 341: COMPILERS
Lecture 23

Announcements

•  Projects 6
–  Available later today
–  Due Next Thursday

•  Project 7
–  Available early next week (Monday)
–  Due: May 5th

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

Dataflow Analysis: Summary
•  Many dataflow analyses fit into a common framework.
•  Key idea: Iterative solution of a system of equations over a lattice of

constraints.
–  Iteration terminates if flow functions are monotonic.
–  Solution is equivalent to meet-over-paths answer if the flow functions

distribute over meet (⨅).

•  Dataflow analyses as presented work for an “imperative” intermediate
representation.
–  The values of temporary variables are updated (“mutated”) during

evaluation.
–  Such mutation complicates calculations
–  SSA = “Single Static Assignment” eliminates this problem, by introducing

more temporaries – each one assigned to only once.
–  Next up: Converting to SSA, finding loops and dominators in CFGs

CIS 341: Compilers 3

LOOPS AND DOMINATORS

Zdancewic CIS 341: Compilers 4

Loops in Control-flow Graphs
•  Taking into account loops is important for optimizations.

–  The 90/10 rule applies, so optimizing loop bodies is important

•  Should we apply loop optimizations at the AST level or at a lower
representation?
–  Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them.

•  Loops may be hard to recognize at the quadruple IR level.
–  Many kinds of loops: while, do/while, for, continue, goto…

•  Problem: How do we identify loops in the control-flow graph?

CIS 341: Compilers 5

Definition of a Loop
•  A loop is a set of nodes in the control flow graph.

–  One distinguished entry point called the header

•  Every node is reachable ���
from the header &���
the header is reachable ���
from every node.
–  A loop is a strongly ���

connected component

•  No edges enter the loop ���
except to the header

•  Nodes with outgoing edges ���
are called loop exit nodes

CIS 341: Compilers 6

header

exit node

loop
nodes

Nested Loops
•  Control-flow graphs may contain many loops
•  Loops may contain other loops:

CIS 341: Compilers 7

Control Tree:

The control tree ���
depicts the nesting���
structure of the ���
program.

Control-flow Analysis
•  Goal: Identify the loops and nesting structure of the CFG.

•  Control flow analysis is based on the idea of dominators:
•  Node A dominates node B if the only way to reach B from the start

node is through node A.

•  An edge in the graph ���
is a back edge if the ���
target node dominates���
the source node.

•  A loop contains at least���
one back edge.���

CIS 341: Compilers 8

Back Edge

Dominator Trees
•  Domination is transitive:

–  if A dominates B and B dominates C then A dominates C

•  Domination is anti-symmetric:
–  if A dominates B and B dominates A then A = B

•  Every flow graph has a dominator tree
–  The Hasse diagram of the dominates relation

CIS 341: Compilers 9

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Dominator Dataflow Analysis
•  We can define Dom[n] as a forward dataflow analysis.

–  Using the framework we saw earlier: Dom[n] = out[n] where:

•  “A node B is dominated by another node A if A dominates all of the
predecessors of B.”

–  in[n] := ∩n’∈pred[n]out[n’]

•  “Every node dominates itself.”
–  out[n] := in[n] ∪ {n}

•  Formally: L = set of nodes ordered by ⊆
–  T = {all nodes}
–  Fn(x) = x ∪ {n}
–  ⨅ is ∩

•  Easy to show monotonicity and that Fn distributes over meet.
–  So algorithm terminates and is MOP

CIS 341: Compilers 10

Improving the Algorithm
•  Dom[b] contains just those nodes along the path in the dominator tree

from the root to b:
–  e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
–  There is a lot of sharing among the nodes

•  More efficient way to represent Dom sets is���
to store the dominator tree.
–  doms[b] = immediate dominator of b
–  doms[8] = 4, doms[7] = 5

•  To compute Dom[b] walk through doms[b]
•  Need to efficiently compute intersections���

 of Dom[a] and Dom[b]
–  Traverse up tree, looking for least common ���

ancestor:
–  Dom[8] ∩Dom[7] = Dom[4]

•  See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy

CIS 341: Compilers 11

1

2

3 4

5 6

7 8

9 0

Completing Control-flow Analysis
•  Dominator analysis identifies back edges:

–  Edge n  h where h dominates n

•  Each back edge has a natural loop:
–  h is the header
–  All nodes reachable from h that also reach���

n without going through h

•  For each back edge n  h, find the natural loop:
–  {n’ | n is reachable from n’ in G – {h}} ∪ {h}

•  Two loops may share the same header: ���
merge them

•  Nesting structure of loops is determined by set inclusion
–  Can be used to build the control tree

CIS 341: Compilers 12

h

n

h

n m

Example Natural Loops

CIS 341: Compilers 13

1

2

3 4

5 6

7 8

9 0

Control Tree:

The control tree ���
depicts the nesting���
structure of the ���
program.

Natural Loops

Uses of Control-flow Information
•  Loop nesting depth plays an important role in optimization heuristics.

–  Deeply nested loops pay off the most for optimization.

•  Need to know loop headers / back edges for doing
–  loop invariant code motion
–  loop unrolling

•  Dominance information also plays a role in converting to SSA form
–  Used internally by LLVM to do register allocation.

CIS 341: Compilers 14

REVISITING SSA

Zdancewic CIS 341: Compilers 15

Phi nodes
Alloc “promotion”
Register allocation

Single Static Assignment (SSA)
•  LLVM IR names (via %uids) all intermediate values computed by the

program.
•  It makes the order of evaluation explicit.
•  Each %uid is assigned to only once

–  Contrast with the mutable quadruple form
–  Note that dataflow analyses had these kill[n] sets because of updates to

variables…

•  Naïve implementation of phase2: map %uids to stack slots
•  Better implementation: map %uids to registers (as much as possible)

•  Question: How do we convert a source program to make maximal use
of %uids, rather than alloca-created storage?
–  two problems: control flow & location in memory

CIS 341: Compilers 16

Alloca vs. %UID
•  Current compilation strategy:

•  Directly map source variables into %uids?

•  Does this always work?

Zdancewic CIS 341: Compilers 17

int x = 3;!
int y = 0;!
x = x + 1;!
y = x + 2;!

%x = alloca i32!
%y = alloca i32!
store i32* %x, 3!
store i32* %y, 0!
%x1 = load %i32* %x!
%tmp1 = add i32 %x1, 1!
store i32* %x, %tmp1!
%x2 = load %i32* %x!
%tmp2 = add i32 %x2, 2 !
store i32* %y, %tmp2!

int x = 3;!
int y = 0;!
x = x + 1;!
y = x + 2;!

int x1 = 3;!
int y1 = 0;!
x2 = x1 + 1;!
y2 = x2 + 2;!

%x1 = add i32 3, 0!
%y1 = add i32 0, 0!
%x2 = add i32 %x1, 1!
%y2 = add i32 %x2, 2!

What about If-then-else?
•  How do we translate this into SSA?

•  What do we put for ???!

CIS 341: Compilers 18

int y = …!
int x = …!
int z = …!
if (p) {!
 x = y + 1;!
} else {!
 x = y * 2;!
}!
z = x + 3;!

entry:!
 %y1 = …!
 %x1 = …!
 %z1 = …!
 %p = icmp …!
 br i1 %p, label %then, label %else !
then:!
 %x2 = add i32 %y1, 1!
 br label %merge!
else:!
 %x3 = mult i32 %y1, 2!
merge:!
 %z2 = %add i32 ???, 3!

Phi Functions
•  Solution: φ functions

–  Fictitious operator, used only for analysis
•  implemented by Mov at x86 level

–  Chooses among different versions of a variable based on the path by
which control enters the phi node.���
%uid = phi <ty> v1, <label1>, … , vn, <labeln>	

Zdancewic CIS 341: Compilers 19

int y = …!
int x = …!
int z = …!
if (p) {!
 x = y + 1;!
} else {!
 x = y * 2;!
}!
z = x + 3;!

entry:!
 %y1 = …!
 %x1 = …!
 %z1 = …!
 %p = icmp …!
 br i1 %p, label %then, label %else !
then:!
 %x2 = add i32 %y1, 1!
 br label %merge!
else:!
 %x3 = mult i32 %y1, 2!
merge:!
 %x4 = phi i32 %x2, %then, %x3, %else!
 %z2 = %add i32 %x4, 3!

Phi Nodes and Loops
•  Importantly, the %uids on the right-hand side of a phi node can be

defined “later” in the control-flow graph.
–  Means that %uids can hold values “around a loop”

–  Scope of %uids is defined by dominance (discussed soon)

Zdancewic CIS 341: Compilers 20

entry:!
 %y1 = …!
 %x1 = …!
 br label %body!

body:!
 %x2 = phi i32 %x1, %entry, %x3, %body!
 %x3 = add i32 %x2, %y1!
 %p = icmp slt i32, %x3, 10!
 br i1 %p, label %body, label %after!

after:!
 … !

Alloca Promotion
•  Not all source variables can be allocated to registers

–  If the address of the variable is taken (as permitted in C, for example)
–  If the address of the variable “escapes” (by being passed to a function)

•  An alloca instruction is called promotable if neither of the two
conditions above holds

•  Happily, most local variables declared in source programs are
promotable
–  That means they can be register allocated

Zdancewic CIS 341: Compilers 21

entry:!
 %x = alloca i32 // %x cannot be promoted!
 %y = call malloc(i32 4)!
 store i32** %y, %x // store the pointer into the heap!

entry:!
 %x = alloca i32 // %x cannot be promoted!
 %y = call foo(i32* %x) // foo may store the pointer into the heap!

Converting to SSA: Overview
•  Start with the ordinary control flow graph that uses allocas

–  Identify “promotable” allocas

•  Compute dominator tree information
•  Calculate def/use information for each such allocated variable
•  Insert φ functions for each variable at necessary “join points”

•  Replace loads/stores to alloc’ed variables with freshly-generated
%uids

•  Eliminate the now unneeded load/store/alloca instructions.

CIS 341: Compilers 22

Where to Place φ functions?
•  Need to calculate the “Dominance Frontier”

•  Node A strictly dominates node B if A dominates B and A ≠ B.

•  The dominance frontier of a node B is the set of all CFG nodes y such
that B dominates a predecessor of y but does not strictly dominate y

•  Write DF[n] for the dominance frontier of node n.

CIS 341: Compilers 23

Dominance Frontiers
•  Example of a dominance frontier calculation results
•  DF[1] = {}, DF[2] = {2}, DF[3] = {2}, DF[4] = {1}, DF[5] = {8,0},���

DF[6] = {8}, DF[7] = {0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {}

CIS 341: Compilers 24

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Control-flow Graph Dominator Tree

Algorithm For Computing DF[n]
•  Assume that doms[n] stores the dominator tree (so that ���

doms[n] is the immediate dominator of n in the tree)

for all nodes b
 if #(pred[b]) ≥ 2
 for each p ∈pred[b]
 runner := p
 while (runner ≠ doms[b])
 DF[runner] := DF[runner] ∪ {b}���
 runner := doms[runner]

CIS 341: Compilers 25

Insert φ at Join Points
•  Lift the DF[n] to a set of nodes N in the obvious way:���

DF[N] = ∪n∈NDF[n]

•  Suppose that at variable x is defined at a set of nodes N.
•  DF0[N] = N���

DFi[N] = DF[DFi-1[N] ∪ N]
•  Let J[N] be the least fixed point of the sequence:���

DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆…
–  That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N]

•  J[N] is called the “join points” for the set N
•  We insert φ functions for the variable x at each such join point.

–  x = φ(x, x, …, x); (one “x” argument for each predecessor of the node)
–  In practice, J[N] is never directly computed, instead you use a worklist

algorithm that keeps adding nodes for DFk[N] until there are no changes.

CIS 341: Compilers 26

