Lecture 25

CIS 341: COMPILERS

Announcements

* Project 6
— Due tonight!
* Project7
— Available soon
— Due: May 5th

 Final Exam:
— Tuesday, April 30" noon-2:00 pm
— Moore 216

Zdancewic CIS 341: Compilers

GARBAGE COLLECTION

Zdancewic CIS 341: Compilers

Why Garbage Collection?

* Manual memory management is cumbersome & error prone:
— Freeing the same pointer twice is ill defined (seg fault or other bugs)

— Calling free on some pointer not created by malloc (e.g.to an element
of an array) is also ill defined

— malloc and free aren’t modular: To properly free all allocated
memory, the programmer has to know what code “owns” each object.
Owner code must ensure free is called just once.

— Not calling free leads to space leaks: memory never reclaimed
« Many examples of space leaks in long-running programs

« Garbage collection:

— Have the language runtime system determine when an allocated chunk of
memory will no longer be used and free it automatically.

— But... garbage collector is usually the most complex part of a language’s
runtime system.

— Garbage collection does impose costs (performance, predictability)

CIS 341: Compilers 4

CIS 341: Compilers

Memory Use & Reachability

When is a chunk of memory no longer needed?
— In general, this problem is undecidable.

We can approximate this information by freeing memory that can’t be
reached from any root references.

— A root pointer is one that might be accessible directly from the program
(i.e. they’re not in the heap).

— Root pointers include pointer values stored in registers, in global
variables, or on the stack.

If a memory cell is part of a record (or other data structure) that can be
reached by traversing pointers from the root, it is /ive.

It is safe to reclaim all memory cells not reachable from a root (such
cells are garbage).

U1

Reachability & Pointers

Starting from stack, registers, & globals (roots), determine which
objects in the heap are reachable following pointers.

Reclaim any object that isn't reachable.

Requires being able to distinguish pointer values from other
values (e.g., ints).
Type safe languages:

— OCaml, SML/NJ use the low bit:
1 it's a scalar, O it's a pointer. (Hence 31-bit ints in OCaml)

— Java puts the tag bits in the object meta-data (uses more space).
— Type safety implies that casts can’t introduce new pointers

— Also, pointers are abstract (references), so objects can be moved
without changing the meaning of the program

Unsafe languages:
— Pointers aren't abstract, they can’t be moved.

— Boehm-Demers-Weiser conservative collector for C use heuristics:
(e.gl., the value doesn't point into an allocated object, pointers are
multiples of 4, etc.)

— May not find as much garbage due to conservativity.

CIS 341: Compilers

Example Object Graph

 Pointers in the stack, registers, and globals are roots

Stack ? ?
——

ﬁ

CIS 341: Compilers

MARK & SWEEP GC

Zdancewic CIS 341: Compilers

Mark and Sweep Garbage Collection

* Classic algorithm with two phases:

 Phase 1: Mark

— Start from the roots
— Do depth-first traversal, marking every object reached.

* Phase 2: Sweep
— Walk over all allocated objects and check for marks.
— Unmarked objects are reclaimed.
— Marked objects have their marks cleared.

— Optional: compact all live objects in heap by moving them adjacent to
one another. (needs extra work & indirection to “patch up” pointers)

CIS 341: Compilers

Results of Marking Graph

Stack

T

)

blocks are
garbage

ﬁ

CIS 341: Compilers

10

Implementing the Mark Phase

 Depth-first search has a natural recursive algorithm.
* Question: what happens when traversing a long linked list?

* Where do we store the information needed to perform the traversal?

— (In general, garbage collectors are tricky to implement because if they
allocate memory who manages that?!)

CIS 341: Compilers 11

Deutsch-Schorr-Waite (DSW) Algorithm

CIS 341: Compilers

No need for a stack, it is possible to use the graph being traversed
itself to store the data necessary...

Idea: during depth-first-search, each pointer is followed only once.
The algorithm can reverse the pointers on the way down and restore
them on the way back up.

— Mark a bit on each object traversed on the way down.

Two pointers:
— curr: points to the current node
— prev points to the previous node

On the way down, flip pointers as you traverse them:
— tmp = curr
curr := curr.next
tmp.next := prev
prev := curr

12

Example of DSW (traversing down)

prev curr

prev curr
= C o T
|I:)rev curr

CIS 341: Compilers 13

Costs & Implications

* Need to generalize to account for objects that have multiple outgoing
pointers.

« Depth-first traversal terminates when there are no children pointers or
all children are already marked.
— Accounts for cycles in the object graph.
* The Deutsch-Schorr-Waite algorithm breaks objects during the
traversal.

— All computation must be halted during the mark phase. (Bad for
concurrent programs!)

« Mark & Sweep algorithm reads all memory in use by the program
(even if it's garbage!)
— Running time is proportional to the total amount of allocated memory
(both live and garbage).
— Can pause the programs for long times during garbage collection.

CIS 341: Compilers 14

COPYING COLLECTION

Zdancewic CIS 341: Compilers

Copying Garbage Collection

« Like mark & sweep: collects all garbage.

 Basic idea: use two regions of memory

— One region is the memory in use by the program. New allocation
happens in this region.

— Other region is idle until the GC requires it.

« Garbage collection algorithm:

— Traverse over live objects in the active region (called the “from- space”),
copying them to the idle region (called the “to-space”).

— After copying all reachable data, switch the roles of the from-space and
to-space.

— All dead objects in the (old) from-space are discarded en masse.
— A side effect of copying is that all live objects are compacted together.

CIS 341: Compilers

Cheney’s Algorithm (1)

 Idea: maintain two pointers into the to-space
— Scan — points to the next piece of data to be examined
— free — points to the next available word of memory

— Invariant: data pointed to by values between the scan and free pointers
might need to be copied to the to-space

— Leave behind “forwarding pointers” to the new copies.

 Crucial subroutine: (note implicit use of type information)

pointer copy-forward(pointer p)

— If structure pointed to by p has already been copied, return the
corresponding forwarding pointer.

— Otherwise:

 Copy the structure pointed to by p into the to-space. (Incrementing the free
pointer)

* Mark the structure in from-space as copied and put a forwarding pointer in
from-space to the copy in to-space

* Return the pointer to the new copy in to-space

CIS 341: Compilers 17

Cheney’s Algorithm (2)

When garbage collection is triggered:
— Initialize the free pointer to be beginning of to-space

For each root R containing a pointer ptr:
Set ptr’ = copy-forward(ptr)
Set R := ptr’
Set the scan pointer to ptr’.

While (scan != free)
— Increment the scan pointer (element-wise according to types of the fields

in the underlying structure)

— If the scan pointer points to a pointer ptr
« Set *scan := copy-forward(ptr)

CIS 341: Compilers

18

Run of Cheney’s Algorithm

Roots
N > Memory at the point -
From-space N \ that GC is triggered.
B - Cl» ‘
\Er‘/
To-space

free

CIS 341: Compilers

19

Run of Cheney’s Algorithm

Roots)
/ /—\
From-space A
B | -~ Cl-e
] :

copy-forward on the
root pointer.

™

N

/

5

/

SCan

A

free

B = Marked as forwarded
[] = Copied, not yet scanne
[] = Copied & scanned

CIS 341: Compilers

20

Run of Cheney’s Algorithm

Roots e
/ /—\
From-space A
s Bl [Ce

D

/E

Scan the first element

of A’ in to-space, copying

B and modifying the pointer
in the datastructure.

N
’

VAl
4N b

SCan

free

B = Marked as forwarded

[] = Copied, not yet scanned
[] = Copied & scanned

CIS 341: Compilers

21

Run of Cheney’s Algorithm

Roots Vit

v

£ /\ Scan the second element

From-space A of A’ in to-space, copying

C and modifying the pointer
s [¢

in the datastructure.
D 4
To-space
A ’ a’

- M
scan free I = Marked as forwarded

[] = Copied, not yet scanned
[] = Copied & scanned

CIS 341: Compilers 22

Run of Cheney’s Algorithm

Roots A

v

pd

Scan the first element

From-space of B’ in to-space, copying

| B

/ :
N

scan free . = Marked as forwarded

[] = Copied, not yet scanned
[] = Copied & scanned

A D and modifying the pointer
in the datastructure.
B (B2 \\[C

CIS 341: Compilers 23

Run of Cheney’s Algorithm

Roots

/

v

7
From-space

A

)

/P

/‘\

Scan the second element
of B in to-space — it’s not
a pointer.

’ ﬁ/

free

B = Marked as forwarded
[] = Copied, not yet scanned
[] = Copied & scanned

CIS 341: Compilers

24

Run of Cheney’s Algorithm

Roots A

v

< 2 Scan the third element
From-space A of B in to-space, copying
E and modifying the pointer
in the datastructure.
s [.] ¢

To-space
A/ /\B/ j/ E/
’

scan free . = Marked as forwarded

[] = Copied, not yet scanned
[] = Copied & scanned

CIS 341: Compilers 25

Run of Cheney’s Algorithm

Roots A

v

Scan the first element

A

| B

7
From-space
s B .

&

=

of C’ in to-space, it has
already been forwarded
so just update the pointer.

To-space

A/ /\B /

/ E/

’

SCan

free

B = Marked as forwarded
[] = Copied, not yet scanned
[] = Copied & scanned

CIS 341: Compilers

26

Run of Cheney’s Algorithm

Roots A

v

pd

Scan the second element

From-space

A

s[Bl |-

| B

T

=

of C’ in to-space, it has
already been forwarded
so just update the pointer.

D’ E’

To-space
A/ /\B/
’

4‘/"

sCan

free

B = Marked as forwarded
[] = Copied, not yet scanned
[] = Copied & scanned

CIS 341: Compilers

27

Run of Cheney’s Algorithm

Roots Vet

v

£ ‘/—['\ Structures D and E

From-space A have no pointers.

B. - C

g =

To-space
AN W D F

scan free B = Marked as forwarded
[] = Copied, not yet scanne
[] = Copied & scanned

CIS 341: Compilers 28

Run of Cheney’s Algorithm

Roots Vet

v

£ ‘/—['\ Structures D and E

From-space A have no pointers.

B. - C

g =

To-space
AN W D F

scan free [= Marked as forwarded
[] = Copied, not yet scanne
[] = Copied & scanned

CIS 341: Compilers 29

Run of Cheney’s Algorithm

Roots Vet

v

£ ‘/—['\ Structures D and E

From-space A have no pointers.

B. - C

g =

To-space
AN W D F

scanfree Bl = Marked as forwarded
[] = Copied, not yet scanne
[] = Copied & scanned

CIS 341: Compilers 30

Run of Cheney’s Algorithm

Roots Vs

v

< /\ Structures D and E

From-space A have no pointers.

Free = Scan, so
B . - C we'’re finished with this

[\E-: root.

To-space
A/ /\B/ / D/ E/
- +

free = scan B = Marked as forwarded
[] = Copied, not yet scanned
[] = Copied & scanned

CIS 341: Compilers 31

Run of Cheney’s Algorithm

Roots Vet

v

To-space

From-space
\ /’}/\P’

|

free = scan

CIS 341: Compilers

Tradeoffs of Copying Collection

 Benefits:
— Simple, no stack space needed to implement the algorithm.

— Running time is proportional to the number of reachable objects (not all
allocated objects)

— Automatically eliminates fragmentation by compacting memory during
copy phase.

— malloc(n) is implemented by free := free + n

« Drawbacks:
— Twice as much memory is needed
— Lots of memory traffic
— Precise pointer/type information is required for traversal
— Still can have long pauses

CIS 341: Compilers 33

Baker’s Concurrent GC

» Variant of copying collection in which the program and the garbage
collector run concurrently.

* Program holds only pointers to to-space

* On field-fetch operation, if the pointer is in from-space, run copy-
forward instead of directly fetching.
— Moves the structure to to-space to maintain the invariant
— Incrementally garbage collects as the program touches data.

* When the to-space fills up, swap to/from by copying the roots and
fixing up the stack and registers.

* Avoids long pauses due to copying

CIS 341: Compilers 34

Generational Garbage Collection

« Observation: If an object has been reachable for a long time, it is
likely to remain so.

* Inlong-running programs, mark & sweep and copying collection
waste time and cache by scanning/copying old objects.
« Idea: Assign objects to different generations G,, G,, G,, ...

— Generation G, contains newest objects, most likely to become garbage (<
10% live)

— Younger generations scanned for garbage much more frequently than
older generations.

— New object eventually given tenure (promoted to the next generation) if
they last long enough.

— Roots of garbage collection for G, include objects in G,

e Remembered sets:

— Avoid scanning all tenured objects by keeping track of pointers from old
objects to new objects. Compiler emits extra code to keep track of such
pointer updates.

— Pointers from old generations to new generations are uncommon

CIS 341: Compilers 35

GC in Practice

« Combination of generational and incremental GC techniques reduce
delay
— Millisecond pause times

|//

« Very large objects (e.g. big arrays) can be copied in a “virtual” fashion

without doing a physical copy
— Complicates the book keeping

« Some systems combine copying collection (for young data) with mark
& sweep (for old data)

« Challenging to scale to server-scale systems with terabytes of memory

* Interactions with OS matter a lot
— It can be cheaper to do GC than it is to start paging
« GCis here to stay (thanks to Java, C#, etc.)

CIS 341: Compilers 36

REFERENCE COUNTING

Zdancewic CIS 341: Compilers

Reference Counting

* ldea: Keep track of the number of references to a given object.
— When creating a new reference to the object, increase the reference count
— On a call to £free, decrement the reference count
— If the reference count is O, the object can be deallocated immediately

« Deallocating an object will decrement reference counts of objects it
points to

— Deallocations can “cascade,” causing lots of objects to be deallocated

 Benefit: immediate reclamation of the space (no need to wait for
garbage collector)

« Challenges:
— Tracking reference counts efficiently
— Cyclic data structures

Zdancewic CIS 341: Compilers 38

Example Reference Counts

* Objects track reference counts.

Stack

=S

N

X

o

ﬁ

CIS 341: Compilers

39

Example Reference Counts

e On free(x)

Stack

oL

N

X

e
1

o

ﬁ

CIS 341: Compilers

40

Example Reference Counts

e On free(x)

r—.l_
Tl e 3
N !
=

CIS 341: Compilers

41

Example Reference Counts

* On free(x)

Stack

s

N

ﬂ

CIS 341: Compilers

42

Example Reference Counts

Stack

3

— -

N

.1

CIS 341: Compilers

Note that the cycle won't

be freed.

43

Dealing with Cycles

« Option 1: Require programmers to explicitly null-out references to
break cycles.

« Option 2: Periodically run GC to collect cycles

« Option 3: Require programmers to distinguish “weak pointers” from
“strong pointers”

— weak pointers: if all references to an object are “weak” then the object
can be freed even with non-zero reference count.

— “Back edges” in the object graph should be designated as weak
— (Aside: weak pointers useful in GC settings too.)

* In practice: Reference counts
— Apples Cocoa framework used ref counts, recent versions use GC
— i0S supports “automatic reference counting”

Zdancewic CIS 341: Compilers 4t

