
CIS 341: COMPILERS
Lecture 25

Announcements

•  Project 6
–  Due tonight!

•  Project 7
–  Available soon
–  Due: May 5th

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

GARBAGE COLLECTION

Zdancewic CIS 341: Compilers 3

Why Garbage Collection?
•  Manual memory management is cumbersome & error prone:

–  Freeing the same pointer twice is ill defined (seg fault or other bugs)
–  Calling free on some pointer not created by malloc (e.g. to an element

of an array) is also ill defined
–  malloc and free aren’t modular: To properly free all allocated

memory, the programmer has to know what code “owns” each object.
Owner code must ensure free is called just once.

–  Not calling free leads to space leaks: memory never reclaimed
•  Many examples of space leaks in long-running programs

•  Garbage collection:
–  Have the language runtime system determine when an allocated chunk of

memory will no longer be used and free it automatically.

–  But… garbage collector is usually the most complex part of a language’s
runtime system.

–  Garbage collection does impose costs (performance, predictability)

CIS 341: Compilers 4

Memory Use & Reachability
•  When is a chunk of memory no longer needed?

–  In general, this problem is undecidable.

•  We can approximate this information by freeing memory that can’t be
reached from any root references.
–  A root pointer is one that might be accessible directly from the program

(i.e. they’re not in the heap).
–  Root pointers include pointer values stored in registers, in global

variables, or on the stack.

•  If a memory cell is part of a record (or other data structure) that can be
reached by traversing pointers from the root, it is live.

•  It is safe to reclaim all memory cells not reachable from a root (such
cells are garbage).

CIS 341: Compilers 5

Reachability & Pointers
•  Starting from stack, registers, & globals (roots), determine which

objects in the heap are reachable following pointers.
•  Reclaim any object that isn't reachable.
•  Requires being able to distinguish pointer values from other

values (e.g., ints).
•  Type safe languages:

–  OCaml, SML/NJ use the low bit: ���
1 it's a scalar, 0 it's a pointer. (Hence 31-bit ints in OCaml)

–  Java puts the tag bits in the object meta-data (uses more space).
–  Type safety implies that casts can’t introduce new pointers
–  Also, pointers are abstract (references), so objects can be moved

without changing the meaning of the program
•  Unsafe languages:

–  Pointers aren’t abstract, they can’t be moved.
–  Boehm-Demers-Weiser conservative collector for C use heuristics:

(e.g., the value doesn't point into an allocated object, pointers are
multiples of 4, etc.)

–  May not find as much garbage due to conservativity.

CIS 341: Compilers 6

Example Object Graph
•  Pointers in the stack, registers, and globals are roots

CIS 341: Compilers 7

EBX EAX

Stack

MARK & SWEEP GC

Zdancewic CIS 341: Compilers 8

Mark and Sweep Garbage Collection
•  Classic algorithm with two phases:

•  Phase 1: Mark
–  Start from the roots
–  Do depth-first traversal, marking every object reached.

•  Phase 2: Sweep
–  Walk over all allocated objects and check for marks.
–  Unmarked objects are reclaimed.
–  Marked objects have their marks cleared.
–  Optional: compact all live objects in heap by moving them adjacent to

one another. (needs extra work & indirection to “patch up” pointers)

CIS 341: Compilers 9

Stack

Results of Marking Graph

CIS 341: Compilers 10

EBX EAX

Unreachable
blocks are
garbage

Implementing the Mark Phase
•  Depth-first search has a natural recursive algorithm.
•  Question: what happens when traversing a long linked list?

•  Where do we store the information needed to perform the traversal?
–  (In general, garbage collectors are tricky to implement because if they

allocate memory who manages that?!)

CIS 341: Compilers 11

Deutsch-Schorr-Waite (DSW) Algorithm
•  No need for a stack, it is possible to use the graph being traversed

itself to store the data necessary…
•  Idea: during depth-first-search, each pointer is followed only once.

The algorithm can reverse the pointers on the way down and restore
them on the way back up.
–  Mark a bit on each object traversed on the way down.

•  Two pointers:
–  curr: points to the current node
–  prev points to the previous node

•  On the way down, flip pointers as you traverse them:
–  tmp := curr���

curr := curr.next���
tmp.next := prev���
prev := curr

CIS 341: Compilers 12

Example of DSW (traversing down)

CIS 341: Compilers 13

prev curr

prev curr

prev curr

prev curr

Costs & Implications
•  Need to generalize to account for objects that have multiple outgoing

pointers.
•  Depth-first traversal terminates when there are no children pointers or

all children are already marked.
–  Accounts for cycles in the object graph.

•  The Deutsch-Schorr-Waite algorithm breaks objects during the
traversal.
–  All computation must be halted during the mark phase. (Bad for

concurrent programs!)

•  Mark & Sweep algorithm reads all memory in use by the program
(even if it’s garbage!)
–  Running time is proportional to the total amount of allocated memory

(both live and garbage).
–  Can pause the programs for long times during garbage collection.

CIS 341: Compilers 14

COPYING COLLECTION

Zdancewic CIS 341: Compilers 15

Copying Garbage Collection
•  Like mark & sweep: collects all garbage.
•  Basic idea: use two regions of memory

–  One region is the memory in use by the program. New allocation
happens in this region.

–  Other region is idle until the GC requires it.

•  Garbage collection algorithm:
–  Traverse over live objects in the active region (called the “from- space”),

copying them to the idle region (called the “to-space”).
–  After copying all reachable data, switch the roles of the from-space and

to-space.
–  All dead objects in the (old) from-space are discarded en masse.
–  A side effect of copying is that all live objects are compacted together.

CIS 341: Compilers 16

Cheney’s Algorithm (1)
•  Idea: maintain two pointers into the to-space

–  Scan – points to the next piece of data to be examined
–  Free – points to the next available word of memory
–  Invariant: data pointed to by values between the scan and free pointers

might need to be copied to the to-space
–  Leave behind “forwarding pointers” to the new copies.

•  Crucial subroutine: (note implicit use of type information)

 pointer copy-forward(pointer p)!
–  If structure pointed to by p has already been copied, return the

corresponding forwarding pointer.
–  Otherwise:

•  Copy the structure pointed to by p into the to-space. (Incrementing the free
pointer)

•  Mark the structure in from-space as copied and put a forwarding pointer in
from-space to the copy in to-space

•  Return the pointer to the new copy in to-space

CIS 341: Compilers 17

Cheney’s Algorithm (2)
•  When garbage collection is triggered:

–  Initialize the free pointer to be beginning of to-space

•  For each root R containing a pointer ptr:���
 Set ptr’ = copy-forward(ptr)���
 Set R := ptr’���
 Set the scan pointer to ptr’.���
 While (scan != free)
–  Increment the scan pointer (element-wise according to types of the fields

in the underlying structure)
–  If the scan pointer points to a pointer ptr

•  Set *scan := copy-forward(ptr)!

CIS 341: Compilers 18

Run of Cheney’s Algorithm

CIS 341: Compilers 19

A

C B

D E

From-space

To-space

Roots

Memory at the point���
that GC is triggered.

free

Run of Cheney’s Algorithm

CIS 341: Compilers 20

A’ A

C B

D E

From-space

To-space

Roots

A’

scan free

copy-forward on the ���
root pointer.

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Run of Cheney’s Algorithm

CIS 341: Compilers 21

A’ A

C B’ B

D E

From-space

To-space

Roots

A’

scan free

B’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the first element ���
of A’ in to-space, copying���
B and modifying the pointer���
in the datastructure.

Run of Cheney’s Algorithm

CIS 341: Compilers 22

A’ A

C’ C B’ B

D E

From-space

To-space

Roots

A’

scan free

B’ C’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the second element ���
of A’ in to-space, copying���
C and modifying the pointer���
in the datastructure.

A’

C’ B’

Run of Cheney’s Algorithm

CIS 341: Compilers 23

A

C B

D
’

D E

From-space

To-space

Roots

A’

scan free

B’ C’ D’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the first element ���
of B’ in to-space, copying���
D and modifying the pointer���
in the datastructure.

Run of Cheney’s Algorithm

CIS 341: Compilers 24

A’ A

C’ C B’ B

D
’

D E

From-space

To-space

Roots

A’

scan free

B’ C’ D’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the second element ���
of B’ in to-space – it’s not���
a pointer.

Run of Cheney’s Algorithm

CIS 341: Compilers 25

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the third element ���
of B’ in to-space, copying���
E and modifying the pointer���
in the datastructure.

Run of Cheney’s Algorithm

CIS 341: Compilers 26

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the first element ���
of C’ in to-space, it has���
already been forwarded
so just update the pointer.

Run of Cheney’s Algorithm

CIS 341: Compilers 27

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the second element ���
of C’ in to-space, it has���
already been forwarded
so just update the pointer.

Run of Cheney’s Algorithm

CIS 341: Compilers 28

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Run of Cheney’s Algorithm

CIS 341: Compilers 29

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Run of Cheney’s Algorithm

CIS 341: Compilers 30

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Run of Cheney’s Algorithm

CIS 341: Compilers 31

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

free = scan

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Free = Scan, so
we’re finished with this ���
root.

Run of Cheney’s Algorithm

CIS 341: Compilers 32

To-space

From-space

Roots

A’

free = scan

B’ C’ D’ E’

Tradeoffs of Copying Collection
•  Benefits:

–  Simple, no stack space needed to implement the algorithm.
–  Running time is proportional to the number of reachable objects (not all

allocated objects)
–  Automatically eliminates fragmentation by compacting memory during

copy phase.
–  malloc(n) is implemented by free := free + n!

•  Drawbacks:
–  Twice as much memory is needed
–  Lots of memory traffic
–  Precise pointer/type information is required for traversal
–  Still can have long pauses

CIS 341: Compilers 33

Baker’s Concurrent GC
•  Variant of copying collection in which the program and the garbage

collector run concurrently.
•  Program holds only pointers to to-space
•  On field-fetch operation, if the pointer is in from-space, run copy-

forward instead of directly fetching.
–  Moves the structure to to-space to maintain the invariant
–  Incrementally garbage collects as the program touches data.

•  When the to-space fills up, swap to/from by copying the roots and
fixing up the stack and registers.

•  Avoids long pauses due to copying

CIS 341: Compilers 34

Generational Garbage Collection
•  Observation: If an object has been reachable for a long time, it is

likely to remain so.
•  In long-running programs, mark & sweep and copying collection

waste time and cache by scanning/copying old objects.
•  Idea: Assign objects to different generations G0, G1, G2, …

–  Generation G0 contains newest objects, most likely to become garbage (<
10% live)

–  Younger generations scanned for garbage much more frequently than
older generations.

–  New object eventually given tenure (promoted to the next generation) if
they last long enough.

–  Roots of garbage collection for G0 include objects in G1

•  Remembered sets:
–  Avoid scanning all tenured objects by keeping track of pointers from old

objects to new objects. Compiler emits extra code to keep track of such
pointer updates.

–  Pointers from old generations to new generations are uncommon

CIS 341: Compilers 35

GC in Practice
•  Combination of generational and incremental GC techniques reduce

delay
–  Millisecond pause times

•  Very large objects (e.g. big arrays) can be copied in a “virtual” fashion
without doing a physical copy
–  Complicates the book keeping

•  Some systems combine copying collection (for young data) with mark
& sweep (for old data)

•  Challenging to scale to server-scale systems with terabytes of memory
•  Interactions with OS matter a lot

–  It can be cheaper to do GC than it is to start paging

•  GC is here to stay (thanks to Java, C#, etc.)

CIS 341: Compilers 36

REFERENCE COUNTING

Zdancewic CIS 341: Compilers 37

Reference Counting
•  Idea: Keep track of the number of references to a given object.

–  When creating a new reference to the object, increase the reference count
–  On a call to free, decrement the reference count
–  If the reference count is 0, the object can be deallocated immediately

•  Deallocating an object will decrement reference counts of objects it
points to
–  Deallocations can “cascade,” causing lots of objects to be deallocated

•  Benefit: immediate reclamation of the space (no need to wait for
garbage collector)

•  Challenges:
–  Tracking reference counts efficiently
–  Cyclic data structures

Zdancewic CIS 341: Compilers 38

2

Example Reference Counts
•  Objects track reference counts.

CIS 341: Compilers 39

x!

EBX EAX

Stack

2

2

3 1 1

1

1 1

2

Example Reference Counts
•  On free(x)

CIS 341: Compilers 40

x!

EBX EAX

Stack

2

2

3 1 1

1

0 1

2

Example Reference Counts
•  On free(x)

CIS 341: Compilers 41

x!

EBX EAX

Stack

2

2

3 1 1

1

0

1

Example Reference Counts
•  On free(x)

CIS 341: Compilers 42

x!

EBX EAX

Stack

2

2

3 1 1

1

1

Example Reference Counts

CIS 341: Compilers 43

x!

EBX EAX

Stack

2

2

3 1 1

1

Note that the cycle won’t
be freed.

Dealing with Cycles
•  Option 1: Require programmers to explicitly null-out references to

break cycles.

•  Option 2: Periodically run GC to collect cycles

•  Option 3: Require programmers to distinguish “weak pointers” from
“strong pointers”
–  weak pointers: if all references to an object are “weak” then the object

can be freed even with non-zero reference count.
–  “Back edges” in the object graph should be designated as weak
–  (Aside: weak pointers useful in GC settings too.)

•  In practice: Reference counts
–  Apples Cocoa framework used ref counts, recent versions use GC
–  iOS supports “automatic reference counting”

Zdancewic CIS 341: Compilers 44

