
Name:

CIS 341 Midterm
2 March 2011

1 /10

2 /10

2 /18

3 /14

4 /18

Total /70

• Do not begin the exam until you are told to do so.

• You have 50 minutes to complete the exam.

• There are 10 pages in this exam.

• Make sure your name is on the top of this page.

1

1. True or False (10 points)

a. T F It is possible to write a regular expression that describes exactly the language consisting of
all strings of balanced parentheses.

b. T F A left-recursive grammar cannot be implemented by an LL(k) parser for any k.

c. T F One big advantage of using an intermediate representation is that it makes the compiler
easier to port to different target architectures.

d. T F OCaml’s representation of the type (int array) array is more likely to incur perfor-
mance penalties (due to caching and other hardware implementation techniques) than C’s
representation of an array declared by int x[][].

e. T F Control may enter a basic block at more than one location.

f. T F When control leaves a basic block, there is at most one possible next instruction to be
executed.

g. T F To generate efficient representations of structured data, the compiler must take into account
the machine word size and alignment constraints of the target platform.

h. T F The closure produced for the function returned by the following OCaml program would
necessarily contain an environment that maps x to 3:

let x = 3 in

let y = 4 + x in

fun (z:int) -> y + z

i. T F Hoisting is the process used when compiling a functional programming language to bring
closed code to the top level.

j. T F We could remove the Push and Pop instructions from the X86lite subset we’ve been using
for class projects without changing the expressiveness of the language.

2

2. Parsing (10 points)

Consider the following grammar for the untyped lambda calculus, in which E is the only nonterminal and
the terminal tokens are taken from the set {varx, fun, ->, (,)}. Here varx stands for a collection of
string-carrying variable identifier tokens, where the string is x. In the concrete syntax, the programmer
would just write a string like foo, which is represented by the token varfoo

E ::= varx | E E | fun varx-> E | (E)

We might implement the datatype of abstract syntax trees for this grammar using the following OCaml
code:

type exp =

| Var of string

| App of exp * exp

| Fun of string * exp

a. (4 points) Demonstrate that this grammar is ambiguous by giving two different abstract syntax trees
(OCaml values of type exp) that might be generated by parsing the input sequence:
fun x -> x x .

b. (6 points) Write down the context-free grammar obtained by disambiguating the language above so
that function application associates to the left and has higher precedence than “fun varx->”, which
you can think of as a unary operator on expressions. For example, the following two inputs should
yield identical parse trees:

fun x -> x x x and fun x ->((x x) x)

3

3. Intermediate code generation
Consider the following statement language, which simplifies the one used in Project 3 (by eliminating for

loops and unmatched if statements).

stmt ::=
| lhs = exp;
| if (exp) stmt else stmt
| while (exp) stmt
| { block }

block ::= vdecls stmts stmts is a list of zero or more stmt elements

Suppose we want to add a primitive form of local exception handling, similar to (but much simpler than)
the kinds of exceptions found in ML or Java. The idea is to extend statements with two new constructs:

stmt ::= . . .
| fail;

| try stmt with stmt

The intended semantics of fail is that it terminates the current (possibly nested) block of code and
immediately transfers control to the with branch of the nearest lexically enclosing try statement. The
statement “try s1 with s2” evaluates s1, and, if no fail exception is raised, s2 is skipped and the program
continues as usual. Such try statements may nest (fail jumps to the nearest enclosing try’s with), and
the with branch might itself fail (assuming there is an outer enclosing try).

For the purposes of this problem, the grammars of expressions (given by exp) and variable declarations
(given by vdecls) are not relevant, because neither one includes any form of statement (and hence cannot
invoke fail).

4

a. (6 points) Given the operational semantics described above, what value is returned by each of the
following programs?

/* program A */

int x = 0;

try {

int y = 1;

fail;

x = x + y;

} with

x = x + 2;

return x;

/* program B */

int x = 0;

try {

int y = 1;

try {

x = x + y;

} with {

x = x + 2;

fail;

}

} with

x = x + 4;

return x;

/* program C */

int x = 0;

try {

int y = 1;

try {

x = x + y;

fail;

} with {

x = x + 2;

fail;

}

} with

x = x + 4;

return x;

• Program A returns:

• Program B returns:

• Program C returns:

5

b. (12 points) Recall that one way of translating statements to the control-flow IL used in Project 3
is to implement a function compile_stmt that takes a context and a statement and returns a pair
containing the modified context and a suitable IL-level instruction stream with labeled jump targets.
Using OCaml-like pseudo code, the case for compiling while loops might look like this:

compile_stmt ctxt (s:stmt) : ctxt * stream =

begin match s with

| While(expguard, stmtbody) ->

let (retexp, codeexp, ctxtexp) = compile_exp ctxt expguard in

let (ctxtout, codebody) = compile_stmt ctxtexp stmtbody in

(ctxtout,

[__lpre:

codeexp

If (retexp != 0) __lbody __lpost

__lbody:

codebody

Jump __lpre

__lpost:])

| ...

end

Briefly describe the changes you would need to make to the compile_stmt function to correctly
translate fail and try statements to the IL. Write down the cases (at the level of OCaml pseudo
code as in the example for while above) for fail and try. Your translation should raise an error
if it encounters a fail statement that is not contained within at least one try. (Use the back of this
page for more space, if necessary.)

6

4. X86 Assembly Programming
Consider the following C function:

int foo(int x, int w) {

int y = x;

return y + w;

}

The gcc compiler (in 32-bit only mode and without optimizations) produces the following X86 assembly
code, which is in our X86lite subset and follows cdecl calling conventions:

_foo:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl 8(%ebp), %eax

movl %eax, -12(%ebp)

movl 12(%ebp), %eax

addl -12(%ebp), %eax

movl %ebp, %esp

popl %ebp

ret

a. (2 points) The local variable y resides at which (indirect offset) memory location?

a. 8(%ebp) b. -12(%ebp) c. 12(%esp) d. 12(%ebp)

b. (2 points) The function argument w resides at which (indirect offset) memory location?

a. 8(%ebp) b. -12(%ebp) c. 12(%esp) d. 12(%ebp)

c. (4 points) How much memory does the stack frame used by _foo in this code take up in bytes?
Include the saved return address and base pointer, and any stack space allocated for local storage, but
not the space needed by function arguments.

a. 16 bytes b. 24 bytes c. 32 bytes d. 40 bytes

7

d. (6 points) Which of the following optimized versions could replace the body _foo: and still be
correct with respect to the C program and cdecl calling conventions? Mark all that are correct—
there may be more than one.

i. _foo:

movl 12(%ebp), %eax

addl 8(%ebp), %eax

movl %ebp, %esp

ret

ii. _foo:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

movl %ebp, %esp

popl %ebp

ret

iii. _foo:

movl 4(%esp), %eax

addl 8(%esp), %eax

ret

iv. _foo:

movl 4(%esp), %ebx

movl 8(%esp), %eax

addl %ebx, %eax

ret

8

5. Type Checking
Recall the simply-typed functional language we studied in class:

Abstract syntax of types:
T ::= int | T -> T

Abstract syntax of expressions:

e ::= i integer constants
| x variables
| e + e addition
| fun (x:T) -> e functions
| e e application

As a reminder, here are the typing rules for this language (the rule names are written [Rule]):

E ` i : int
[Int] x :T ∈ E

E ` x : T
[Var]

E ` e1 : int E ` e2 : int
E ` e1 + e2 : int

[Add]

E, x :T1 ` e : T2

E ` fun (x:T1) -> e : T1 -> T2
[Fun]

E ` e1 : T1 -> T2 E ` e2 : T1

E ` e1 e2 : T2
[App]

a. (8 points) Complete the following derivation tree:

` fun (x:int) -> x + ((fun (y:int) -> x + y) 3) : int -> int
[Fun]

9

b. (10 points) Consider extending the language with a ML-style option types (a specific instance of
ML’s more general datatypes). There are three new expression forms:

e ::= . . . stuff from before
| None Empty option
| Some e Non-empty option
| match e with None -> e | Some x -> e Case analysis

To typecheck options, we add a new form of types:

T ::= . . . | T option

Operationally, these options behave just as those in ML—you can “tag” any value with Some to
indicate the presence of the optional value and use the “tag” None to indicate its absence. The
match expression checks the tag and branches to the appropriate case, binding the tagged value to
the variable x if needed. Note that in the Some x -> e branch of the pattern match, the variable x is
in scope inside e.
Complete the typing rules for these new constructs (note that the return types in the conclusions are
missing—you should fill them in):

E ` None :

E ` Some e :

E ` match e1 with None -> e2 | Some x -> e3 :

10

