Lecture 3

CIS 341: COMPILERS

Announcements

* HW1: Hellocaml!
— is due tonight at 11:59:59pm.

« HW?2: X86lite

— Will be available soon... look for an announcement on Piazza
— Pair-programming project

Zdancewic CIS 341: Compilers

The target architecture for CIS341

X86LITE

Zdancewic CIS 341: Compilers

1978:

1982:
1985:
1989:
1993:
1995:
1997:
2000:
2003:
2006:
2008:
2011:
2013:

AMD has a parallel line of processors t
el Ll

CIS 341: Compilers

Intel’s X86 Archltecture

Intel introduces 8086
80186, 80286 ‘
80386
80486 SRR 1
Pentium o
Pentium Pro
Pentium I/
Pentium 4
Pentium M, Intel Core
Intel Core 2

Intel Core i3/i5/i7
SandyBridge / lvyBridge
Haswell

X86 Evolution & Moore’s Law

Intel Processor Transistor Count

10,000,000,000
—
<2
o 1,000,000,000
Q
90}
o0
@)
= 100,000,000
——
c
-
o
O 10,000,000
—
@)
-—
2
wn
C 1,000,000
)
—
=
) IIIIIIIIIIIIIIIIIIIIII
10,000 -
WP DD PP TS TS ETFEELEEED PP
DA A T S S S S S S S S S I S S S S S Y

T Intel Processor Transistor Count

w

CIS 341: Compilers

X86 vs. X86lite

* X86 assembly is very complicated:

8-, 16-, 32-, 64-bit values + floating points, etc.

Intel 64 and 1A 32 architectures have a huge number of functions
“CISC” complex instructions

Machine code: instructions range in size from 1 byte to 17 bytes
Lots of hold-over design decisions for backwards compatibility

Hard to understand, there is a large book about optimizations at just the
instruction-selection level

« X86blite is a very simple subset of X86:
— Only 64 bit signed integers (no floating point, no 16bit, no ...)

— Only about 20 instructions

Sufficient as a target language for general-purpose computing

CIS 341: Compilers

Processor

X86 Schematic

/

ALU

Flags

RIP

Instruction
Decoder
Control
rax rbx rcx rdx
rsi rdi Rpb Rsb
r08 r09 rlo0 rll
rl2 rl3 rl4 rl5
Registers
Zdancewic CIS 341: Compilers

—-een e e e o e e e e = =

Memory

Heap

0x00000000

Larger Addresses

v

Oxffffffff
7

X86lite Machine State: Registers

* Register File: 16 64-bit registers

— rax general purpose accumulator

— rbx base register, pointer to data

— rcx counter register for strings & loops

— rdx data register for I/0O

— rsi pointer register, string source register

— rdi pointer register, string destination register
— rbp base pointer, points to the stack frame

— rsp stack pointer, points to the top of the stack

— R08-r15general purpose registers

|//

* rip a “virtual” register, points to the current instruction
— rip is manipulated only indirectly via jumps and return.

CIS 341: Compilers

Simplest instruction: mov

movqg SRC, DEST copy SRC into DEST

Here, DEST and SRC are operands

DEST is treated as a location

— A location can be a register or a memory address
SRC is treated as a value

— A value is the contents of a register or memory address
— A value can also be an immediate (constant) or a label

movq $4, %rax // move the 64-bit immediate value 4 into rax
movqg %rbx, %rax // move the contents of rbx into rax

CIS 341: Compilers

A Note About Instruction Syntax

« X86 presented in two common syntax formats

« AT&T notation: source before destination
— Prevalent in the Unix/Mac ecosystems movqg $5, %rax
— Immediate values prefixed with ‘$’

— Registers prefixed with ‘%’ movl $5, S%eax

— Mnemonic suffixes: movqg vs. mov src dest
* g = quadword (4 words)
* 1=long (2 words) Note: X86lite uses the AT&T notation
* w=word and the 64-bit only version of the
* b=byte instructions and registers.

* Intel notation: destination before source mov rax, 5
— Used in the Intel specification / manuals
— Prevalent in the Windows ecosystem mov eax, 5

— Instruction variant determined by register name dest src

Zdancewic CIS 341: Compilers 10

X86lite Arithmetic instructions

* negq DEST two’s complement negation

* addg SRC, DEST DEST < DEST + SRC

 subqg SRC, DEST DEST < DEST — SRC

* imulqg SRC, Reg Reg < Reg * SRC (truncated 128-bit mult.)

Examples as written in:

addg %rbx, %rax // rax < rax + rbx

subg $4, rsp // tsp < rsp-4

* Note: Reg (in imulqg) must be a register, not a memory address

CIS 341: Compilers 11

X86lite Logic/Bit manipulation Operations

« notq DEST
 andg SRC, DEST
* orqg SRC, DEST
« xorq SRC, DEST

e sarg Amt, DEST

e shlgAmt, DEST
e shrg Amt, DEST

CIS 341: Compilers

logical negation

DEST < DEST && SRC
DEST « DEST || SRC
DEST < DEST xor SRC

DEST < DEST >> amt (arithmetic shift right)

DEST < DEST << amt (arithmetic shift left)
DEST < DEST >>> amt (bitwise shift right)

12

X86 Operands

« Operands are the values operated on by the assembly instructions

e |mm
o Lbl
* Reg
e Ind

CIS 341: Compilers

64-bit literal signed integer “immediate”

a “label” representing a machine address
the assembler/linker/loader resolve labels

One of the 16 registers, the value of a register is
its contents

[base:Reg][index:Reg,scale:int32][disp]
machine address (see next slide)

13

X86 Addressing

In general, there are three components of an indirect address
— Base: a machine address stored in a register
— Index * scale: a variable offset from the base
— Disp: a constant offset (displacement) from the base

addr(ind) = Base + [Index * scale] + Disp
— When used as a location, ind denotes the address addr(ind)

— When used as a value, ind denotes Mem[addr(ind)], the contents
of the memory address

Example: -4 (%rsp) denotes address: rsp — 4
Example: (%rax, %rcx, 4) denotesaddress: rax + 4*rcx
Example: 12 (%rax, %$rcx, 4) denotes address: rax + 4*rcx +12

Note: Index cannot be rsp Note: X86lite does not need this full
generality. It does not use index * scale.

CIS 341: Compilers 14

X86lite Memory Model

« The X86lite memory consists of 264 bytes numbered 0x00000000
through Oxfff£ff£Ff£.

« X86lite treats the memory as consisting of 64-bit (8-byte) quadwords.

* Therefore: legal X86lite memory addresses consist of 64-bit,
quadword-aligned pointers.

— All memory addresses are evenly divisible by 8
* leaqInd, DEST DEST < addr(Ind) loads a pointer into DEST

* By convention, there is a stack that grows from high addresses to low
addresses

 The register rsp points to the top of the stack
— pushqg SRC rsp < rps - 8; Mem[rsp] < SRC
— popqg DEST DEST <~ Mem|[rsp]; rsp < rsp + 8

CIS 341: Compilers 15

X86lite State: Condition Flags & Codes

« X86 instructions set flags as a side effect

+ X86lite has only 3 flags:
— OF: “overflow” set when the result is too big/small to fit in 64-bit reg.
— SF: “sign” set to the sign or the result (O=positive, 1 = negative)

— ZF: “zero” set when the result is O

« From these flags, we can define Condition Codes
— To compare SRC1 and SRC2, compute SRCT — SRC2 to set the flags

— e equality holds when ZF is set
— ne inequality holds when (not ZF)
— g greater than holds when (not ZF) and (not SF)

-1 less than holds when SF <> OF
» Equivalently: ((SF && not OF) || (not SF && OF))
— ge greater or equal holds when (not SF)
— le than orequal holds when SF <> OF or ZF

CIS 341: Compilers 16

Code Blocks & Labels

* X86 assembly code is organized into labeled blocks:

labell:
<instruction>

<instruction>

<instruction>
label?2:
<instruction>

<instruction>

<instruction>

 Labels indicate code locations that can be jump targets (either through
conditional branch instructions or function calls).

* Labels are translated away by the linker and loader — instructions live in
the heap in the “code segment”

* An X86 program begins executing at a designated code label
(usually “main”).

CIS 341: Compilers 18

Conditional Instructions

 cmpqg SRCT, SRC2
e setbCC DEST
« JCCSRC

* Example:

cmpq 3rcx, 3%rax
je truelbl

CIS 341: Compilers

Compute SRC2 — SRCT1, set condition flags

DEST’s lower byte < if CC then 1 else O

rip < if CC then SRC else fallthrough

Compare rax to ecx
If rax = rex then jumpto truelbl

19

Jumps, Call and Return

e jmp SRC rip < SRC Jump to location in SRC

« callgSRC Push rip; rip < SRC

— Call a procedure: Push the program counter to the stack (decrementing
rsp) and then jump to the machine instruction at the address given by
SRC.

e retq Pop into rip

— Return from a procedure: Pop the current top of the stack into rip
(incrementing rsp).

— This instruction effectively jumps to the address at the top of the stack

CIS 341: Compilers 20

See file: x86.ml

IMPLEMENTING X86LITE

Zdancewic CIS 341: Compilers

See: runtime.c

DEMO: HANDCODING X86LITE

Zdancewic CIS 341: Compilers

Compiling, Linking, Running

 To use hand-coded X86:

1. Compile main.ml (or something like it) to either native or bytecode

2. Runit, redirecting the output to some s file, e.g.:
/handcoded.native >> test.s

3. Use gcc to compile & link with runtime.c:
gcc -0 test runtime.c test.s

4. You should be able to run the resulting exectuable:
Jtest

« If you want to debug in gdb:
— Call gcc with the —g flag too

CIS 341: Compilers

24

