Lecture 4

CIS 341: COMPILERS

Announcements

« HW?2: X86lite
— Available on the course web pages.
— Due: Monday, February 2" at 11:59:59pm
— Pair-programming;:
 There’s a pair-search survey on Piazza

* Register the group on the submission page
* Submission by any group member counts for the group

* Registration:
— If you were on the wait list, you should have been contacted
— If you are not registered, please see me after class

Zdancewic CIS 341: Compilers

(Simplified) Compiler Structure

Source Code
(Character stream)
if (b == 0) a = 0;

Token Strea

Abstract Syntax Tre

Intermediate Code

Assembly Code Our current focus:
Cmpg rcx, O X86 target language
setb rax <€

Zdancewic CIS 341: Compilers

See www.cis.upenn.edu/~cis341/15sp/hw/hw2/x86lite.shtml

X86LITE

Zdancewic CIS 341: Compilers

Compilation & Execution

Source code foo.c

gce-S
Assembly Code foo.s
as
Object Code foo.o
Library code Id
Fully-resolved machine Code foo

(Usually: gcc -o foo foo.c)

Executable image
Zdancewic CIS 341: Compilers 5

PROGRAMMING IN X86LITE

Zdancewic CIS 341: Compilers

3 parts of the C memory model

* The code & data (or "text") segment
— contains compiled code, constant strings, etc.
* The Heap

— Stores dynamically allocated objects

— Allocated via "malloc"
— Deallocated via "free"

— C runtime system Heap

 The Stack

— Stores local variables

— Stores the return address of a function

Larger Addresses

* In practice, most languages use this
model.

CIS 341: Compilers

~

Local/Temporary Variable Storage

» Need space to store:
— Global variables
— Values passed as arguments to procedures

— Local variables (either defined in the source program or introduced by the
compiler)

* Processors provide two options
— Registers: fast, small size (32 or 64 bits), limited number
— Memory: slow, very large amount of space (4+ GB)

* In practice on X86:

— Registers are limited (and have restrictions)
— Divide memory into regions including the stack and the heap

CIS 341: Compilers

Calling Conventions

* Specify the locations (e.g. register or stack) of arguments passed to a
function

« Designate registers either:
— Caller Save — e.g. freely usable by the called code
— Callee Save — e.g. must be restored by the called code
* Protocol for deallocating stack-allocated arguments
— Caller cleans up
— Callee cleans up (makes variable arguments harder)

CIS 341: Compilers

32-bit cdecl calling conventions

“Standard” on X86 for many C-based operating systems
(i.e. almost all)

— Still some wrinkles about return values (e.g. some compilers use EAX and
EDX to return small values)

— This is evolving due to 64 bit (which allows for packing multiple values in
one register)

Arguments are passed on the stack in right-to-left order
Return value is passed in EAX
Registers EAX, ECX, EDX are caller save

Other registers are callee save
— lgnoring these conventions will cause havoc (bus errors or seg faults)

Many other variants: fastcall, syscall, thiscall

CIS 341: Compilers 10

x86-64 calling conventions

* Microsoft x64
— Used by Visual C++ and Windows (but supported by gcc, intel C++, etc.)
— 4 register arguments
— 4-quad “shadow space”

* SystemV AMD64 ABI
— Used by linux, bsd, Mac OSX
— First six inteter/pointer arguments are passed in registers:

* rdi, rsi, rdx, rcx, r8, r9
* Arguments seven and up, passed on the stack
— Stack aligned on 16-byte boundaries
— Callee save registers: rbp, rbx, r12—r15
— Caller save register: everything else
— Caller cleans up stack arguments

Zdancewic CIS 341: Compilers

11

1.

1.

2.

Call Stacks: Caller’s protocol

Function call:
f(e,, e,y .y €))7
Save caller-save registers:
— all but rbp, rbx, r12-r15
Evaluate e, tov,, e,tov,, ..., e, t0O v,

Move v, .. v, Into registers as on previous rsp —>

slide.
Push v, to v, onto the top of the stack.

Use call to jump to the code for £
— pushing the return address onto the stack.

Invariant: returned value passed in rax

After call:

clean up the pushed arguments by
popping the stack.

Restore caller-saved registers

CIS 341: Compilers

return addr.

A

Vg

Vi

local
variables

State of the stack
just after the Call
instruction:

larger memory addresses

12

1.

1.
2.

Call Stacks: Callee’s protocol

rsp —~
On entry: local,

Save old frame pointer
— rbp is callee save | local,
Create new frame pointer

rbp —— local,
— movqg rsp, rbp
Allocate stack space for local variables. old rbp

Invariants: (assuming quad-size values)

— Function argument n > 6 is located at:
rbp + (n-5) * 8

— Local variable Iocalj is located at:
tbp-(—1)*8

On exit:
Pop local storage
Restore rbp

CIS 341: Compilers

return addr.
A
Vg

Vi

previous
local
variables

State of the stack

after Step 3 of entry.

larger memory addresses

13

