
CIS 341: COMPILERS
Lecture 6

Announcements

•  Colloquium Talk TODAY 3:00-4:00 in Wu & Chen
 Xuehai Qian
 Taming Relaxed Memory Consistency and Non-determinism in
 Parallel System

•  My office hours today (only) will start at 4:00 instead of 3:30.

Zdancewic CIS 341: Compilers 2

INTERMEDIATE
REPRESENTATIONS

Zdancewic CIS 341: Compilers 3

Eliminating Nested Expressions
•  Fundamental problem:

–  Compiling complex & nested expression forms to simple operations.

 IR

•  Idea: name intermediate values, make order of evaluation explicit.
–  No nested operations.

CIS 341: Compilers 4

((1 + X4) + (3 + (X1 * 5)))

Add(Add(Const 1, Var X4),  
 Add(Const 3, Mul(Var X1,  
 Const 5)))

Source

AST

?

Translation to SLL
•  Given this:

•  Translate to this desired SLL form:
let tmp0 = add 1L varX4 in
let tmp1 = mul varX1 5L in
let tmp2 = add 3L tmp1 in
let tmp3 = add tmp0 tmp2 in
 ret tmp3

•  Translation makes the order of evaluation explicit.
•  Names intermediate values
•  Note: introduced temporaries are never modified

CIS 341: Compilers 5

Add(Add(Const 1, Var X4),  
 Add(Const 3, Mul(Var X1,  
 Const 5)))

INTERMEDIATE
REPRESENTATIONS

Zdancewic CIS 341: Compilers 6

See ir-by-hand, ir3.ml, ir4.ml, ir5.ml

LLVM LITE

Zdancewic CIS 341: Compilers 7

see ll.ml in HW3

Low-Level Virtual Machine (LLVM)
•  Open-Source Compiler Infrastructure

–  see llvm.org for full documntation
•  Created by Chris Lattner (advised by Vikram Adve) at UIUC

–  LLVM: An infrastructure for Mult-stage Optimization, 2002
–  LLVM: A Compilation Framework for Lifelong Program Analysis and

Transformation, 2004

•  2005: Adopted by Apple for XCode 3.1
•  Front ends:

–  llvm-gcc (drop-in replacement for gcc)
–  Clang: C, objective C, C++ compiler supported by Apple
–  various languages: ADA, Scala, Haskell, …

•  Back ends:
–  x86 / Arm / Power / etc.

•  Used in many academic/research projects
–  Here at Penn: SoftBound, Vellvm

Zdancewic CIS 341: Compilers 8

LLVM Compiler Infrastructure

LLVM

Front
Ends

Code
Gen/Jit

Optimizations/
Transformations

Typed SSA
IR

Analysis

[Lattner et al.]

Basic Blocks
•  A sequence of instructions that is always executed starting at the first

instruction and always exits at the last instruction.
–  Starts with a label that names the entry point of the basic block.
–  Ends with a control-flow instruction (e.g. branch or return) the “link”
–  Contains no other control-flow instructions
–  Contains no interior label used as a jump target

•  Basic blocks can be arranged into a control-flow graph
–  Nodes are basic blocks
–  There is a directed edge from node A to node B if the control flow

instruction at the end of basic block A might jump to the label of basic
block B.

CIS 341: Compilers 10

