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LLVM 
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See llvm.org 
 
 
 
 
 



Example LLVM Code 
•  LLVM offers a textual representation of its IR  

–  files ending in .ll
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define @factorial(%n) {
  %1 = alloca 
  %acc = alloca 
  store %n,  %1
  store 1,  %acc
  br label %start

start:
  %3 = load %1
  %4 = icmp sgt %3, 0
  br %4, label %then, label %else

then:
  %6 = load %acc
  %7 = load %1
  %8 = mul %6, %7
  store %8, %acc
  %9 = load %1
  %10 = sub %9, 1
  store %10, %1
  br label %start

else:
  %12 = load %acc
  ret %12
}

#include <stdio.h>
#include <stdint.h>

int64_t factorial(int64_t n) {
  int64_t acc = 1;
  while (n > 0) {
    acc = acc * n;
    n = n - 1;
  }
  return acc;
}

factorial64.c 

factorial-pretty.ll 



Real LLVM  
•  Decorates values with type information���

  i64 ���
  i64* ���
  i1 

•  Permits numeric���
identifiers 

•  Has alignment ���
annotations 

•  Keeps track of ���
entry edges for���
each block:���
preds = %5, %0
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; Function Attrs: nounwind ssp
define i64 @factorial(i64 %n) #0 {
  %1 = alloca i64, align 8
  %acc = alloca i64, align 8
  store i64 %n, i64* %1, align 8
  store i64 1, i64* %acc, align 8
  br label %2

; <label>:2                          ; preds = %5, %0
  %3 = load i64* %1, align 8
  %4 = icmp sgt i64 %3, 0
  br i1 %4, label %5, label %11

; <label>:5                          ; preds = %2
  %6 = load i64* %acc, align 8
  %7 = load i64* %1, align 8
  %8 = mul nsw i64 %6, %7
  store i64 %8, i64* %acc, align 8
  %9 = load i64* %1, align 8
  %10 = sub nsw i64 %9, 1
  store i64 %10, i64* %1, align 8
  br label %2

; <label>:11                         ; preds = %2
  %12 = load i64* %acc, align 8
  ret i64 %12
}

factorial.ll 



Basic Blocks 
•  A sequence of instructions that is always executed starting at the first 

instruction and always exits at the last instruction. 
–  Starts with a label that names the entry point of the basic block. 
–  Ends with a control-flow instruction (e.g. branch or return) the “link” 
–  Contains no other control-flow instructions 
–  Contains no interior label used as a jump target 

•  Basic blocks can be arranged into a control-flow graph 
–  Nodes are basic blocks 
–  There is a directed edge from node A to node B if the control flow 

instruction at the end of basic block A might jump to the label of basic 
block B.  
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Example Control-flow Graph 
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%1 = alloca 
%acc = alloca 
store %n,  %1
store 1,  %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

start:	
  

entry:	
  

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

then:	
   else:	
  

define @factorial(%n) {

}



LL Basic Blocks and Control-Flow Graphs 
•  LLVM enforces (some of) the basic block invariants syntactically. 
•  Representation in OCaml: 

 
•  A control flow graph is represented as a list of labeled basic blocks 

with these invariants: 
–  No two blocks have the same label 
–  All terminators mention only labels that are defined among the set of 

basic blocks 
–  There is a distinguished, unlabeled, entry block: 
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type block = {
insns : (uid * insn) list;
terminator : terminator

}

type cfg = block * (lbl * block) list



LL Storage Model: Locals 
•  Several kinds of storage: 

–  Local variables (or temporaries):    %uid
–  Global declarations (e.g. for string constants):   @gid
–  Abstract locations:  references to (stack-allocated) storage created by the 

alloca instruction 
–  Heap-allocated structures created by external calls (e.g. to malloc) 

•  Local variables: 
–  Defined by the instructions of the form %uid = … 
–  Must satisfy the single static assignment invariant 

•  Each %uid appears on the left-hand side of an assignment only once in the 
entire control flow graph. 

–  The value of a %uid remains unchanged throughout its lifetime 
–  Analogous to “let %uid = e in …” in OCaml 

•  Intended to be an abstract version of machine registers. 
•  We’ll see later how to extend SSA to allow richer use of local 

variables 
–  phi nodes 
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LL Storage Model: alloca
•  The alloca instruction allocates stack space and returns a reference 

to it. 
–  The returned reference is stored in local:  
      %ptr = alloca typ
–  The amount of space allocated is determined by the type 

•  The contents of the slot are accessed via the load and store 
instructions:���
���
 %acc = alloca i64 ; allocate a storage slot 
store 341, %acc ; store the integer value 341  
%x = load %acc ; load the value 341 into %x 

•  Gives an abstract version of stack slots 
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STRUCTURED DATA 
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Compiling Structured Data 
•  Consider C-style structures like those below. 
•  How do we represent Point and Rect values?
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struct Point { int x; int y; };  

struct Rect  { struct Point ll, lr, ul, ur };  

struct Rect mk_square(struct Point ll, int len) {
  struct Rect square;
  square.ll = square.lr = square.ul = square.ur = ll;
  square.lr.x += len;
  square.ul.y += len;
  square.ur.x += len;
  square.ur.y += len;
  return square;
}
 



Representing Structs 
struct Point { int x; int y;};

•  Store the data using two contiguous words of memory. 
•  Represent a Point value p as the address of the first word. 

struct Rect  { struct Point ll, lr, ul, ur }; 
•  Store the data using 8 contiguous words of memory. 

•  Compiler needs to know the size of the struct at compile time to 
allocate the needed storage space. 

•  Compiler needs to know the shape of the struct at compile time to 
index into the structure. 
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x yp

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare



Assembly-level Member Access 

•  Consider:  ⟦square.ul.y⟧ =  (x86.operand, x86.insns) 

•  Assume that %rcx holds the base address of square 
•  Calculate the offset relative to the base pointer of the data: 

–  ul = sizeof(struct Point) + sizeof(struct Point) 
–  y   = sizeof(int) 

•  So:    ⟦square.ul.y⟧ = (ans,  Movq 20(%rcx) ans)
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ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int x; int y; };  

struct Rect  { struct Point ll, lr, ul, ur };



Padding & Alignment  
•  How to lay out non-homogeneous structured data? 
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struct Example { 
  int x; 
  char a;
  char b; 
  int y; 
};

x a b y

x a b y

x a yb

32-bit boundaries 

Padding 

Not 32-bit ���
aligned 



Copy-in/Copy-out 
When we do an assignment in C as in: 

struct Rect mk_square(struct Point ll, int elen) {
  struct Square res;
  res.lr = ll;  

...

then we copy all of the elements out of the source and put them  
in the target.  Same as doing word-level operations: 
 
struct Rect mk_square(struct Point ll, int elen) {
  struct Square res;
  res.lr.x = ll.x;
  res.lr.y = ll.x;
  ...

 
•  For really large copies, the compiler uses something like memcpy 

(which is implemented using a loop in assembly). 



C Procedure Calls 
•  Similarly, when we call a procedure, we copy arguments in, and copy 

results out. 
–  Caller sets aside extra space in its frame to store results that are bigger 

than will fit in %rax. 
–  We do the same with scalar values such as integers or doubles. 

•  Sometimes, this is termed "call-by-value". 
–  This is bad terminology. 
–  Copy-in/copy-out is more accurate. 

•  Benefit: locality 
•  Problem:  expensive for large records… 

•  In C:  can opt to pass pointers to structs:  “call-by-reference” 

•  Languages like Java and OCaml always pass non-word-sized objects 
by reference. 



Call-by-Reference: 
                 

•  The caller passes in the address of the point and the 
address of the result (1 word each). 

•  Note that returning references to stack-allocated data can 
cause problems. 
–  Need to allocate storage in the heap… 

void mkSquare(struct Point *ll, int elen,
              struct Rect *res) {
  res->lr = res->ul = res->ur = res->ll = *ll;
  res->lr.x += elen;
  res->ur.x += elen; 
  res->ur.y += elen;
  res->ul.y += elen;
}

void foo() {
  struct Point origin = {0,0};
  struct Square unit_sq;
  mkSquare(&origin, 1, &unit_sq);
}



ARRAYS 
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Arrays 

•  Space is allocated on the stack for buf. 
–  Note, without the ability to allocated stack space dynamically (C’s 

alloca function) need to know size of buf at compile time… 

•  buf[i] is really just: (base_of_array) + i * elt_size 

void foo() { void foo() {
  char buf[27];      char buf[27];

  buf[0] = 'a';      *(buf) = 'a';
  buf[1] = 'b';      *(buf+1) = 'b';
  ...          ...
  buf[25] = 'z';      *(buf+25) = 'z';
  buf[26] = 0;      *(buf+26) = 0;
}        }
 



Multi-Dimensional Arrays 
•  In C,  int M[4][3] yields an array with 4 rows and 3 columns. 
•  Laid out in row-major order:���

 

•  M[i][j] compiles to? 
 
•  In Fortran, arrays are laid out in column major order.  

•  In ML and Java, there are no multi-dimensional arrays:  
–  (int array) array  is represented as an array of pointers to arrays of ints. 

•  Why is knowing these memory layout strategies important? 

M[0][0] M[0][1] M[0][2] M[1][0] M[1][1] M[1][2] M[2][0] …

M[0][0] M[1][0] M[2][0] M[3][0] M[0][1] M[1][1] M[2][1] …



Array Bounds Checks 
•  Safe languages (e.g. Java, C#, ML but not C, C++) check array indices 

to ensure that they’re in bounds. 
–  Compiler generates code to test that the computed offset is legal 

•  Needs to know the size of the array… where to store it? 
–  One answer:  Store the size before the array contents. 

•  Other possibilities: 
–  Pascal: only permit statically known array sizes  (very unwieldy in 

practice) 
–  What about multi-dimensional arrays? 
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Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]

arr



Array Bounds Checks (Implementation) 
•  Example: Assume %rax holds the base pointer (arr) and %ecx holds 

the array index i.  To read a value from the array arr[i]:���
  movq -8(%rax) %rdx            // load size into rdx���
  cmpq %rdx %rcx      // compare index to bound���
  j l __ok       // jump if  0 <= i < size���
  callq __err_oob     // test failed, call the error handler���
__ok:   

movq (%rax, %rcx, 8) dest // do the load from the array access 

•  Clearly more expensive: adds move, comparison & jump 
–  More memory traffic 
–  Hardware can improve performance: executing instructions in parallel, 

branch prediction 

•  These overheads are particularly bad in an inner loop 
•  Compiler optimizations can help remove the overhead 

–  e.g. In a for loop, if bound on index is known, only do the test once 
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C-style Strings 
•  A string constant "foo" is represented as global data: 

   _string42: 102 111 111 0

•  C uses null-terminated strings 
•  Strings are usually placed in the text segment so they are read only.   

–  allows all copies of the same string to be shared. 

•  Rookie mistake (in C): write to a string constant. 

•  Instead, must allocate space on the heap: 

 

char *p = "foo”;
p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4);   /* include the null byte */
p[0] = 'b’;



TAGGED DATATYPES 
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C-style Enumerations / ML-style datatypes 
•  In C: 

•  In ML: 

•  Associate an integer tag with each case: sun = 0, mon = 1, … 
–  C lets programmers choose the tags 

•  ML datatypes can also carry data: 

•  Representation: a foo value is a pointer to a pair:  (tag, data) 
•  Example: tag(Bar) = 0, tag(Baz) = 1���

⟦let f = Bar(3)⟧ = ���
���
⟦let g = Baz(4, f)⟧ =  
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0 3f

1 4 fg

enum Day {sun, mon, tue, wed, thu, fri, sat} today;	
  

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo



Switch Compilation 
•  Consider the C statement: 

switch (e) {
case sun: s1; break;
case mon: s2; break;
…
case sat: s3; break;

}

•  How to compile this? 
–  What happens if some of the break statements are omitted? (Control falls 

through to the next branch.) 
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 Cascading ifs and Jumps 
⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ = 
 
 
 
 

•  Each $tag1…$tagN ���
is just a constant���
int tag value. 

 

•  Note: ⟦break;⟧���
(within the ���
switch branches)���
is:���
  br %merge ���
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%tag = ⟦e⟧;
br label %l1

l1: %cmp1 = icmp eq %tag, $tag1  
br %cmp1 label %b1, label %merge

b1: ⟦s1⟧
br label %l2                   

l2: %cmp2 = icmp eq %tag, $tag2  
br %cmp2 label %b2, label %merge

b2: ⟦s2⟧
br label %l3

…
lN: %cmpN = icmp eq %tag, $tagN  

br %cmpN label %bN, label %merge
bN: ⟦sN⟧

br label %merge

merge: 



Alternatives for Switch Compilation 
•  Nested if-then-else works OK in practice if # of branches is small  

–  (e.g. < 16 or so). 

•  For more branches, use better datastructures to organize the jumps: 
–  Create a table of pairs (v1, branch_label) and loop through 
–  Or, do binary search rather than linear search 
–  Or, use a hash table rather than binary search 

•  One common case: the tags are dense in some range ���
[min…max] 
–  Let N = max – min 
–  Create a branch table  Branches[N] where Branches[i] = branch_label for 

tag i. 
–  Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag] 

•  Common to use heuristics to combine these techniques. 
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ML-style Pattern Matching 
•  ML-style match statements are like C’s switch statements except: 

–  Patterns can bind variables 
–  Patterns can nest 

•  Compilation strategy: 
–  “Flatten” nested patterns into���

matches against one constructor���
at a time. 

–  Compile the match against the���
tags of the datatype as for C-style switches. 

–  Code for each branch additionally must  copy data from ⟦e⟧ to the 
variables bound in the patterns. 

•  There are many opportunities for optimization, many papers about 
“pattern-match compilation” 
–  Many of these transformations can be done at the AST level   
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match e with 
| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with 
| Bar(z) -> e1  
| Baz(y, tmp) -> 
     (match tmp with

| Bar(w) -> e2
| Baz(_, _) -> e3)


