
CIS 341: COMPILERS
Lecture 7

LLVM

Zdancewic CIS 341: Compilers 2

See llvm.org

Example LLVM Code
•  LLVM offers a textual representation of its IR

–  files ending in .ll

Zdancewic CIS 341: Compilers 3

define @factorial(%n) {
 %1 = alloca
 %acc = alloca
 store %n, %1
 store 1, %acc
 br label %start

start:
 %3 = load %1
 %4 = icmp sgt %3, 0
 br %4, label %then, label %else

then:
 %6 = load %acc
 %7 = load %1
 %8 = mul %6, %7
 store %8, %acc
 %9 = load %1
 %10 = sub %9, 1
 store %10, %1
 br label %start

else:
 %12 = load %acc
 ret %12
}

#include <stdio.h>
#include <stdint.h>

int64_t factorial(int64_t n) {
 int64_t acc = 1;
 while (n > 0) {
 acc = acc * n;
 n = n - 1;
 }
 return acc;
}

factorial64.c

factorial-pretty.ll

Real LLVM
•  Decorates values with type information���

 i64 ���
 i64* ���
 i1

•  Permits numeric���
identifiers

•  Has alignment ���
annotations

•  Keeps track of ���
entry edges for���
each block:���
preds = %5, %0

Zdancewic CIS 341: Compilers 4

; Function Attrs: nounwind ssp
define i64 @factorial(i64 %n) #0 {
 %1 = alloca i64, align 8
 %acc = alloca i64, align 8
 store i64 %n, i64* %1, align 8
 store i64 1, i64* %acc, align 8
 br label %2

; <label>:2 ; preds = %5, %0
 %3 = load i64* %1, align 8
 %4 = icmp sgt i64 %3, 0
 br i1 %4, label %5, label %11

; <label>:5 ; preds = %2
 %6 = load i64* %acc, align 8
 %7 = load i64* %1, align 8
 %8 = mul nsw i64 %6, %7
 store i64 %8, i64* %acc, align 8
 %9 = load i64* %1, align 8
 %10 = sub nsw i64 %9, 1
 store i64 %10, i64* %1, align 8
 br label %2

; <label>:11 ; preds = %2
 %12 = load i64* %acc, align 8
 ret i64 %12
}

factorial.ll

Basic Blocks
•  A sequence of instructions that is always executed starting at the first

instruction and always exits at the last instruction.
–  Starts with a label that names the entry point of the basic block.
–  Ends with a control-flow instruction (e.g. branch or return) the “link”
–  Contains no other control-flow instructions
–  Contains no interior label used as a jump target

•  Basic blocks can be arranged into a control-flow graph
–  Nodes are basic blocks
–  There is a directed edge from node A to node B if the control flow

instruction at the end of basic block A might jump to the label of basic
block B.

CIS 341: Compilers 5

Example Control-flow Graph

Zdancewic CIS 341: Compilers 6

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

start:	

entry:	

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

then:	
 else:	

define @factorial(%n) {

}

LL Basic Blocks and Control-Flow Graphs
•  LLVM enforces (some of) the basic block invariants syntactically.
•  Representation in OCaml:

•  A control flow graph is represented as a list of labeled basic blocks

with these invariants:
–  No two blocks have the same label
–  All terminators mention only labels that are defined among the set of

basic blocks
–  There is a distinguished, unlabeled, entry block:

Zdancewic CIS 341: Compilers 7

type block = {
insns : (uid * insn) list;
terminator : terminator

}

type cfg = block * (lbl * block) list

LL Storage Model: Locals
•  Several kinds of storage:

–  Local variables (or temporaries): %uid
–  Global declarations (e.g. for string constants): @gid
–  Abstract locations: references to (stack-allocated) storage created by the

alloca instruction
–  Heap-allocated structures created by external calls (e.g. to malloc)

•  Local variables:
–  Defined by the instructions of the form %uid = …
–  Must satisfy the single static assignment invariant

•  Each %uid appears on the left-hand side of an assignment only once in the
entire control flow graph.

–  The value of a %uid remains unchanged throughout its lifetime
–  Analogous to “let %uid = e in …” in OCaml

•  Intended to be an abstract version of machine registers.
•  We’ll see later how to extend SSA to allow richer use of local

variables
–  phi nodes

Zdancewic CIS 341: Compilers 8

LL Storage Model: alloca
•  The alloca instruction allocates stack space and returns a reference

to it.
–  The returned reference is stored in local:
 %ptr = alloca typ
–  The amount of space allocated is determined by the type

•  The contents of the slot are accessed via the load and store
instructions:���
���
 %acc = alloca i64 ; allocate a storage slot 
store 341, %acc ; store the integer value 341  
%x = load %acc ; load the value 341 into %x

•  Gives an abstract version of stack slots

Zdancewic CIS 341: Compilers 9

STRUCTURED DATA

Zdancewic CIS 341: Compilers 10

Compiling Structured Data
•  Consider C-style structures like those below.
•  How do we represent Point and Rect values?

CIS 341: Compilers 11

struct Point { int x; int y; };  

struct Rect { struct Point ll, lr, ul, ur };  

struct Rect mk_square(struct Point ll, int len) {
 struct Rect square;
 square.ll = square.lr = square.ul = square.ur = ll;
 square.lr.x += len;
 square.ul.y += len;
 square.ur.x += len;
 square.ur.y += len;
 return square;
}

Representing Structs
struct Point { int x; int y;};

•  Store the data using two contiguous words of memory.
•  Represent a Point value p as the address of the first word.

struct Rect { struct Point ll, lr, ul, ur };
•  Store the data using 8 contiguous words of memory.

•  Compiler needs to know the size of the struct at compile time to
allocate the needed storage space.

•  Compiler needs to know the shape of the struct at compile time to
index into the structure.

CIS 341: Compilers 12

x yp

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

Assembly-level Member Access

•  Consider: ⟦square.ul.y⟧ = (x86.operand, x86.insns)

•  Assume that %rcx holds the base address of square
•  Calculate the offset relative to the base pointer of the data:

–  ul = sizeof(struct Point) + sizeof(struct Point)
–  y = sizeof(int)

•  So: ⟦square.ul.y⟧ = (ans, Movq 20(%rcx) ans)

CIS 341: Compilers 13

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int x; int y; };  

struct Rect { struct Point ll, lr, ul, ur };

Padding & Alignment
•  How to lay out non-homogeneous structured data?

Zdancewic CIS 341: Compilers 14

struct Example {
 int x;
 char a;
 char b;
 int y;
};

x a b y

x a b y

x a yb

32-bit boundaries

Padding

Not 32-bit ���
aligned

Copy-in/Copy-out
When we do an assignment in C as in:

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr = ll;  

...

then we copy all of the elements out of the source and put them
in the target. Same as doing word-level operations:

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr.x = ll.x;
 res.lr.y = ll.x;
 ...

•  For really large copies, the compiler uses something like memcpy

(which is implemented using a loop in assembly).

C Procedure Calls
•  Similarly, when we call a procedure, we copy arguments in, and copy

results out.
–  Caller sets aside extra space in its frame to store results that are bigger

than will fit in %rax.
–  We do the same with scalar values such as integers or doubles.

•  Sometimes, this is termed "call-by-value".
–  This is bad terminology.
–  Copy-in/copy-out is more accurate.

•  Benefit: locality
•  Problem: expensive for large records…

•  In C: can opt to pass pointers to structs: “call-by-reference”

•  Languages like Java and OCaml always pass non-word-sized objects
by reference.

Call-by-Reference:

•  The caller passes in the address of the point and the
address of the result (1 word each).

•  Note that returning references to stack-allocated data can
cause problems.
–  Need to allocate storage in the heap…

void mkSquare(struct Point *ll, int elen,
 struct Rect *res) {
 res->lr = res->ul = res->ur = res->ll = *ll;
 res->lr.x += elen;
 res->ur.x += elen;
 res->ur.y += elen;
 res->ul.y += elen;
}

void foo() {
 struct Point origin = {0,0};
 struct Square unit_sq;
 mkSquare(&origin, 1, &unit_sq);
}

ARRAYS

Zdancewic CIS 341: Compilers 18

Arrays

•  Space is allocated on the stack for buf.
–  Note, without the ability to allocated stack space dynamically (C’s

alloca function) need to know size of buf at compile time…

•  buf[i] is really just: (base_of_array) + i * elt_size

void foo() { void foo() {
 char buf[27]; char buf[27];

 buf[0] = 'a'; *(buf) = 'a';
 buf[1] = 'b'; *(buf+1) = 'b';

 buf[25] = 'z'; *(buf+25) = 'z';
 buf[26] = 0; *(buf+26) = 0;
} }

Multi-Dimensional Arrays
•  In C, int M[4][3] yields an array with 4 rows and 3 columns.
•  Laid out in row-major order:���

•  M[i][j] compiles to?

•  In Fortran, arrays are laid out in column major order.

•  In ML and Java, there are no multi-dimensional arrays:
–  (int array) array is represented as an array of pointers to arrays of ints.

•  Why is knowing these memory layout strategies important?

M[0][0] M[0][1] M[0][2] M[1][0] M[1][1] M[1][2] M[2][0] …

M[0][0] M[1][0] M[2][0] M[3][0] M[0][1] M[1][1] M[2][1] …

Array Bounds Checks
•  Safe languages (e.g. Java, C#, ML but not C, C++) check array indices

to ensure that they’re in bounds.
–  Compiler generates code to test that the computed offset is legal

•  Needs to know the size of the array… where to store it?
–  One answer: Store the size before the array contents.

•  Other possibilities:
–  Pascal: only permit statically known array sizes (very unwieldy in

practice)
–  What about multi-dimensional arrays?

CIS 341: Compilers 21

Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]

arr

Array Bounds Checks (Implementation)
•  Example: Assume %rax holds the base pointer (arr) and %ecx holds

the array index i. To read a value from the array arr[i]:���
 movq -8(%rax) %rdx // load size into rdx���
 cmpq %rdx %rcx // compare index to bound���
 j l __ok // jump if 0 <= i < size���
 callq __err_oob // test failed, call the error handler���
__ok:  

movq (%rax, %rcx, 8) dest // do the load from the array access

•  Clearly more expensive: adds move, comparison & jump
–  More memory traffic
–  Hardware can improve performance: executing instructions in parallel,

branch prediction

•  These overheads are particularly bad in an inner loop
•  Compiler optimizations can help remove the overhead

–  e.g. In a for loop, if bound on index is known, only do the test once

CIS 341: Compilers 22

C-style Strings
•  A string constant "foo" is represented as global data:

 _string42: 102 111 111 0

•  C uses null-terminated strings
•  Strings are usually placed in the text segment so they are read only.

–  allows all copies of the same string to be shared.

•  Rookie mistake (in C): write to a string constant.

•  Instead, must allocate space on the heap:

char *p = "foo”;
p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4); /* include the null byte */
p[0] = 'b’;

TAGGED DATATYPES

Zdancewic CIS 341: Compilers 24

C-style Enumerations / ML-style datatypes
•  In C:

•  In ML:

•  Associate an integer tag with each case: sun = 0, mon = 1, …
–  C lets programmers choose the tags

•  ML datatypes can also carry data:

•  Representation: a foo value is a pointer to a pair: (tag, data)
•  Example: tag(Bar) = 0, tag(Baz) = 1���

⟦let f = Bar(3)⟧ = ���
���
⟦let g = Baz(4, f)⟧ =

CIS 341: Compilers 25

0 3f

1 4 fg

enum Day {sun, mon, tue, wed, thu, fri, sat} today;	

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

Switch Compilation
•  Consider the C statement:

switch (e) {
case sun: s1; break;
case mon: s2; break;
…
case sat: s3; break;

}

•  How to compile this?
–  What happens if some of the break statements are omitted? (Control falls

through to the next branch.)

CIS 341: Compilers 26

 Cascading ifs and Jumps
⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ =

•  Each $tag1…$tagN ���
is just a constant���
int tag value.

•  Note: ⟦break;⟧���
(within the ���
switch branches)���
is:���
 br %merge ���

 CIS 341: Compilers 27

%tag = ⟦e⟧;
br label %l1

l1: %cmp1 = icmp eq %tag, $tag1
br %cmp1 label %b1, label %merge

b1: ⟦s1⟧
br label %l2

l2: %cmp2 = icmp eq %tag, $tag2
br %cmp2 label %b2, label %merge

b2: ⟦s2⟧
br label %l3

…
lN: %cmpN = icmp eq %tag, $tagN

br %cmpN label %bN, label %merge
bN: ⟦sN⟧

br label %merge

merge:

Alternatives for Switch Compilation
•  Nested if-then-else works OK in practice if # of branches is small

–  (e.g. < 16 or so).

•  For more branches, use better datastructures to organize the jumps:
–  Create a table of pairs (v1, branch_label) and loop through
–  Or, do binary search rather than linear search
–  Or, use a hash table rather than binary search

•  One common case: the tags are dense in some range ���
[min…max]
–  Let N = max – min
–  Create a branch table Branches[N] where Branches[i] = branch_label for

tag i.
–  Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]

•  Common to use heuristics to combine these techniques.

CIS 341: Compilers 28

ML-style Pattern Matching
•  ML-style match statements are like C’s switch statements except:

–  Patterns can bind variables
–  Patterns can nest

•  Compilation strategy:
–  “Flatten” nested patterns into���

matches against one constructor���
at a time.

–  Compile the match against the���
tags of the datatype as for C-style switches.

–  Code for each branch additionally must copy data from ⟦e⟧ to the
variables bound in the patterns.

•  There are many opportunities for optimization, many papers about
“pattern-match compilation”
–  Many of these transformations can be done at the AST level

CIS 341: Compilers 29

match e with
| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with
| Bar(z) -> e1  
| Baz(y, tmp) ->
 (match tmp with

| Bar(w) -> e2
| Baz(_, _) -> e3)

