Lecture 9

CIS 341: COMPILERS

Lexical analysis, tokens, regular expressions, automata

LEXING

Zdancewic CIS 341: Compilers 2

Compilation in a Nutshell

Source Code
(Character stream)
if (b ==0) { a=1; }

Token stream:

if| (| b

I
I
o
-~
~
Q
I
o
~e
-

Abstract Syntax Tree:

Intermediate code:
11:

gcnd = icmp eq 164 %b, 0
IJC)IIEE br il %cnd, label %12,
label %13
12:

store i64* %a, 1

br label %13
13:

Assembly Code
11:

cmpg %eax, $0
jeq 12 <
jmp 13

12:

Today: Lexing

Source Code
(Character stream)
if (b

Token stream:

if| (| b

I
I
o
N

Abstract Syntax Tree:

None

Assembly Code
11:

cmpg %eax, $0 <

Intermediate code:
11:
gcnd = icmp eq 164 %b, 0
br il %cnd, label %12,
label %13
12:
store i64* %a, 1
br label %13
13:

jeq 12
jmp 13
12:

First Step: Lexical Analysis

« Change the character stream “if (b == 0) a = 0;” into tokens:
if| (|bl==|o|y| tlal=]01l;%

IF; LPAREN; Ident(“b”); EQEQ; Int(0); RPAREN; LBRACE;
Ident(“a”); EQ; Int(0); SEMI; RBRACE

« Token: data type that represents indivisible “chunks” of text:

— lIdentifiers: a yll elsex 100

— Keywords: if else while

— Integers: 2 200 =500 5L

— Floating point: 2.0 .02 le5

— Symbols: + * ° { } () ++ << >> >>>
— Strings: ‘xR “He said, \"Are you?\"”

— Comments: (* CIS341: Project 1 .. *) /* foo */

« Often delimited by whitespace (* /, \t, etc.)
— In some languages (e.g. Python or Haskell) whitespace is significant

U1

CIS 341: Compilers

How hard can it be?
handlex.ml

DEMO: HANDLEX

Zdancewic CIS 341: Compilers 6

Lexing By Hand

« How hard can it be?
— Tedious and painful!

* Problems:
— Precisely define tokens
— Matching tokens simultaneously
— Reading too much input (need look ahead)
— Error handling

— Hard to compose/interleave tokenizer code
— Hard to maintain

CIS 341: Compilers

Regular Expressions

« Regular expressions precisely describe sets of strings.

« A regular expression R has one of the following forms:

— €

_ lal

- R1 | Rz
- R1R2

— R*

Epsilon stands for the empty string

An ordinary character stands for itself

Alternatives, stands for choice of R, or R,
Concatenation, stands for R, followed by R,
Kleene star, stands for zero or more repetitions of R

e Useful extensions:

_ ufoo"

— R+

— R?

_ [vav_vzl]

Strings, equivalentto '"£''o''o
One or more repetitions of R, equivalent to RR*
Zero or one occurrences of R, equivalent to (& |R)
Oneofaorborcor... z, equivalentto (a|b]|..|z)

— [*'0"'="9"]1 Any character except 0 through 9

— R as x

CIS 341: Compilers

Name the string matched by R as x

Example Regular Expressions

* Recognize the keyword “if”: "if"
« Recognize adigit: ['0'-'9"]

« Recognize an integer literal: '='2['0'=-"9"']+

* Recognize an identifier:
(['a'_'z']|['A'_'Z'])([’O'_'g']|’_'|[’a'_'z']|
['A’_’Z'])*

* In practice, it's useful to be able to name regular expressions:

let lowercase = ['a'-"z2']
[IAI_IZI]
let character = uppercase | lowercase

let uppercase

CIS 341: Compilers

How to Match?

« Consider the input string: ifx = 0

— Could lex as: i f or as:

x| =10 ifx | =10

* Regular expressions alone are ambiguous, need a rule for choosing
between the options above
* Most languages choose “longest match”
— So the 2 option above will be picked
— Note that only the first option is “correct” for parsing purposes

» Conflicts: arise due to two regular expressions with non-empty
Intersection

— Ties broken by giving some matches higher priority
— Example: keywords have priority over identifiers
— Usually specified by order the rules appear in the lex input file

CIS 341: Compilers 10

Lexer Generators

« Reads a list of regular expressions: R,,..,R, , one per token.

 Each token has an attached “action” A, (just a piece of code to run
when the regular expression is matched):

rule token = parse

| '-'?digit+ { Int (Int32.o0f string (lexeme lexbuf)) }
| "+’ { PLUS }

| "if' { IF }

| character (digit|character|' ')*{ Ident (lexeme lexbuf) }

| whitespace+ { token lexbuf }

Generates scanning code that:
1. Decides whether the input is of the form (R, |..|R,) *

2. Whenever the scanner matches a (longest) token, it runs the associated
action

CIS 341: Compilers 11

olex.mll

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers

Implementation Strategies

« Most Tools: lex, ocamllex, flex, etc.:

— Table-based
— Deterministic Finite Automata (DFA)
— Goal: Efficient, compact representation, high performance

* Other approaches:
— Brzozowski derivatives
— Idea: directly manipulate the (abstract syntax of) the regular expression

— Compute partial “derivatives”
 Regular expression that is “left-over” after seeing the next character

— Elegant, purely functional, implementation
— (very cool!)

Zdancewic CIS 341: Compilers 13

Finite Automata

 Consider the regular expression: " [~r 7”7 1%

* An automaton (DFA) can be represented as:
— A transition table:

e
o ERROR

T
FRROR ERROR

— A graph:

CIS 341: Compilers

RE to Finite Automaton?

« Can we build a finite automaton for every regular expression?
— Yes! Recall CIS 262 for the complete theory...

« Strategy: consider every possible regular expression (by induction on
the structure of the regular expressions):

a
a
o : What about?
0 R [R,
R;R,

CIS 341: Compilers 15

Nondeterministic Finite Automata

A finite set of states, a start state, and accepting state(s)
 Transition arrows connecting states

— Labeled by input symbols

— Or ¢ (which does not consume input)

« Nondeterministic: two arrows leaving the same state may have the
same label

CIS 341: Compilers 16

RE to NFA?

« Converting regular expressions to NFAs is easy.
« Assume each NFA has one start state, unique accept state

CIS 341: Compilers

17

RE to NFA (cont’'d)

* Sums and Kleene star are easy with NFAs

R1|R2

R*

CIS 341: Compilers

18

DFA versus NFA

 DFA:

— Action of the automaton for each input is fully determined

— Automaton accepts if the input is consumed upon reaching an accepting
state

— Obvious table-based implementation

* NFA:
— Automaton potentially has a choice at every step

— Automaton accepts an input string if there exists a way to reach an
accepting state

— Less obvious how to implement efficiently

CIS 341: Compilers

19

NFA to DFA conversion (Intuition)

 Idea: Run all possible executions of the NFA “in parallel”
 Keep track of a set of possible states: “finite fingers”
« Consider: =?2[0-971+

[0-9]

' ~
[0-9]
e‘ oo
€

* NFA representation:

* DFA representation:

CIS 341: Compilers 20

Summary of Lexer Generator Behavior

Take each regular expression R; and it’s action A,
Compute the NFA formed by (R; | R, | .. | R,)

— Remember the actions associated with the accepting states of the R;
Compute the DFA for this big NFA

— There may be multiple accept states (why?)

— A single accept state may correspond to one or more actions (why?)
Compute the minimal equivalent DFA

— There is a standard algorithm due to Myhill & Nerode
Produce the transition table
Implement longest match:

— Start from initial state

— Follow transitions, remember last accept state entered (if any)

— Accept input until no transition is possible (i.e. next state is “ERROR”)

— Perform the highest-priority action associated with the last accept state; if

no accept state there is a lexing error

CIS 341: Compilers

Lexer Generators in Practice

* Many existing implementations: lex, Flex, Jlex, ocamllex, ...

— For example ocamllex program
* see lexlex.mll, olex.mll, piglatin.mll on course website

* Error reporting:

— Associate line number/character position with tokens

— Use a rule to recognize ‘\n” and increment the line number

— The lexer generator itself usually provides character position info.
« Sometimes useful to treat comments specially

— Nested comments: keep track of nesting depth

 Lexer generators are usually designed to work closely with parser
generators...

CIS 341: Compilers 22

lexlex.mll, olex.mll, piglatin.mll

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers 23

CORRECTNESS?

Zdancewic CIS 341: Compilers

Correct Execution?

* What does it mean for an Imp program to be executed
correctly?

 Even at the interpreter level we could show equivalence
between the small-step and the large-step operational
semantics:

cmd / st —* SKIP / st’
iff

cmd /st U st’

Compiler Correctness?

« We have to relate the source and target language semantics across the
compilation function C[-] : source — target.

cmd /st ¢—* SKIP /st
iff

Clcmd] / C[st] —* C[st’]

* Is this enough?
* What if cmd goes into an infinite loop?

Comparing Behaviors

Consider two programs P and P’ possibly in different languages.
— e.g. Pis an LLVMlite program, P’ is its compilation to x86

The semantics of the languages associate to each program a set of
observable behaviors:

»(P) and %(P)

Note: |5(P)| = 1 if P is deterministic, > 1 otherwise

What is Observable?

 For Imp-like languages:

observable behavior ::=
| terminates(st) (i.e. observe the final state)
| diverges
| goeswrong

* For pure functional languages:

observable behavior ::=
| terminates(v) (i.e. observe the final value)
| diverges
| goeswrong

What about 1/0?

« Add a trace of input-output events performed:

t
coind. T

1 | e:t (finite traces)
1 | exT (finite and infinite traces)

observable behavior ::=
| terminates(t, st) (end in state st after trace t)
| diverges(T) (loop, producing trace T)
| goeswrong(t)

Examples

P1:
print(1); /st = terminates(out(1)::{],st)
P2:
print(1l); print(2); /st
= terminates(out(1)::out(2)::[],st)
P3:
WHILE true DO print(l) END /st
= diverges(out(1)::out(1)::...)

So B((P1) # B(P2) # B(P3)

Bisimulation

* Two programs P1 and P2 are bisimilar whenever:

B(P1) = B(P2)

« The two programs are completely indistinguishable.

 But... this is often too strong in practice.

Compilation Reduces Nondeterminism

« Some languages (like C) have underspecified behaviors:
— Example: order of evaluation of expressions () + g()

« Concurrent programs often permit nondetermism
— Classic optimizations can reduce this nondterminism

— Example:
a:=x+1;bi=x+1 || X 1= X+1

VS.

a:=x+1;b:=a || X 1= X+1

Backward Simulation

Program P2 can exhibit fewer behaviors than P1:

BP1) =2 XB(P2)

All of the behaviors of P2 are permitted by P1, though some of them
may have been eliminated.

Also called refinement.

What about goeswrong?

« Compilers often translate away bad behaviors.

X:=1/ly,; x:=42 VS. X =42
(divide by O error) (always terminates)

e Justifications:

— Compiled program does not “go wrong” because the program type checks
or is otherwise formally verified

— Or just “garbage in/garbage out”

Safe Backwards Simulation

Only require the compiled program’s behaviors to agree if the source
program could not go wrong:

goeswrong(t) & B(P1) = B(P1) 2 XH(P2)

Idea: let S be the functional specification of the program:
A set of behaviors not containing goeswrong(t).

— A program P satsifies the spec if B(P) € S

Lemma: If P2 is a safe backwards simulation of P1 and P1 satisfies the
spec, then P2 does too.

Building Backward Simulations

out(1)

Source: o > 0,
A LS AA
1 , U 1
! z/ /7 !
I , ’ I
: I A

G[_] : ,/’ // : G[-]

1 s Vi 1
i -~ ’ :
: :

Vi out(1) |V

Target: T T, 2Ty T > T,

ldea: The event trace along a (target) sequence of steps originating from a
compiled program must correspond to some source sequence.
Tricky parts:

- Must consider all possible target steps

- If the compiler uses many target steps for once source step, we have
invent some way of relating the intermediate states to the source.

- the compilation function goes the wrong way to help!

