
CIS 341: COMPILERS
Lecture 10

PARSING

Zdancewic CIS 341: Compilers 2

Creating an abstract representation of program syntax.

Today: Parsing

CIS 341: Compilers 3

Source Code���
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0  
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

 if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2,
label %l3  
l2:
 store i64* %a, 1
 br label %l3
l3:

Parsing: Finding Syntactic Structure

CIS 341: Compilers 4

{
 if (b == 0) a = b;
 while (a != 1) {
 print_int(a);
 a = a – 1;
 }
}

Block

If While

Bop

b == 0

Bop

a != 1

Block

Expr

… …

Call

…

…

Source input

Abstract Syntax tree

Syntactic Analysis (Parsing): Overview
•  Input: stream of tokens (generated by lexer)
•  Output: abstract syntax tree

•  Strategy:
–  Parse the token stream to traverse the “concrete” syntax
–  During traversal, build a tree representing the “abstract” syntax

•  Why abstract? Consider these three different concrete inputs:
a + b
(a + ((b)))
((a) + (b))

•  Note: parsing doesn’t check many things:
–  Variable scoping, type agreement, initialization, …

CIS 341: Compilers 5

Bop

a + b

Same abstract syntax tree

Specifying Language Syntax
•  First question: how to describe language syntax precisely and

conveniently?
•  Last time: we described tokens using regular expressions

–  Easy to implement, efficient DFA representation
–  Why not use regular expressions on tokens to specify programming

language syntax?

•  Limits of regular expressions:
–  DFA’s have only finite # of states
–  So… DFA’s can’t “count”
–  For example, consider the language of all strings that contain balanced

parentheses – easier than most programming languages, but not regular.

•  So: we need more expressive power than DFA’s

CIS 341: Compilers 6

CONTEXT FREE GRAMMARS

Zdancewic CIS 341: Compilers 7

Context-free Grammars
•  Here is a specification of the language of balanced parens:

•  The definition is recursive – S mentions itself.

•  Idea: “derive” a string in the language by starting with S and rewriting
according to the rules:
–  Example: S ⟼ (S)S ⟼ ((S)S)S ⟼ ((ε)S)S ⟼ ((ε)S)ε ⟼ ((ε)ε)ε = (())

•  You can replace the “nonterminal” S by its definition anywhere
•  A context-free grammar accepts a string iff there is a derivation from

the start symbol

CIS 341: Compilers 8

S ⟼ (S)S

S ⟼ ε

Note: Once again we ���
have to take care to
distinguish meta-language
elements (e.g. “S” and “⟼”) ���
from object-language ���
elements (e.g. “(“).*

* And, since we’re writing this description in English, we are���
careful distinguish the meta-meta-language (e.g. words) from the���
meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically
•  A Context-free Grammar (CFG) consists of

–  A set of terminals (e.g., a token or ε)
–  A set of nonterminals (e.g., S and other syntactic variables)
–  A designated nonterminal called the start symbol
–  A set of productions: LHS ⟼ RHS

•  LHS is a nonterminal
•  RHS is a string of terminals and nonterminals

•  Example: The balanced parentheses language:

•  How many terminals? How many nonterminals? Productions?���

CIS 341: Compilers 9

S ⟼ (S)S

S ⟼ ε

Another Example: Sum Grammar
•  A grammar that accepts parenthesized sums of numbers:

 e.g.: (1 + 2 + (3 + 4)) + 5

•  Note the vertical bar ‘|’ is shorthand for multiple productions:

 S ⟼ E + S 4 productions
 S ⟼ E 2 nonterminals: S, E
 E ⟼ number 4 terminals: (,), +, number
 E ⟼ (S) Start symbol: S

CIS 341: Compilers 10

S ⟼ E + S | E

E ⟼ number | (S)

Derivations in CFGs
•  Example: derive (1 + 2 + (3 + 4)) + 5
•  S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 11

S ⟼ E + S | E
E ⟼ number | (S)

For arbitrary strings α, β, γ and
production rule A ⟼ β
a single step of the derivation is:

αAγ ⟼ αβγ

(substitute β for an occurrence of A)	

In general, there are many possible
derivations for a given string

Note: Underline indicates symbol
being expanded.

From Derivations to Parse Trees

•  Tree representation of the
derivation

•  Leaves of the tree are
terminals
–  In-order traversal yields the

input sequence of tokens

•  Internal nodes: nonterminals
•  No information about the

order of the derivation steps

•  (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 12

Parse Tree

4

S

E + S

(S) E

E + S 5

1 E + S

2 E

(S)

E + S

3 E S ⟼ E + S | E
E ⟼ number | (S)

From Parse Trees to Abstract Syntax
•  Parse tree:
“concrete syntax”

•  Abstract syntax tree
(AST):

•  Hides, or abstracts,
unneeded information.

CIS 341: Compilers 13

+

1 +

+ 5

2 +

3 4

4

S

E + S

(S) E

E + S 5

1 E + S

2 E

(S)

E + S

3 E

Derivation Orders
•  Productions of the grammar can be applied in any order.
•  There are two standard orders:

–  Leftmost derivation: Find the left-most nonterminal and apply a
production to it.

–  Rightmost derivation: Find the right-most nonterminal and apply a
production there.

•  Note that both strategies (and any other) yield the same
parse tree!
–  Parse tree doesn’t contain the information about what order the

productions were applied.

CIS 341: Compilers 14

Example: Left- and rightmost derivations

•  Leftmost derivation: Rightmost derivation:
•  S ⟼ E + S S ⟼ E + S

⟼ (S) + S ⟼ E + E
⟼ (E + S) + S ⟼ E + 5
⟼ (1 + S) + S ⟼ (S) + 5
⟼ (1 + E + S) + S ⟼ (E + S) + 5
⟼ (1 + 2 + S) + S ⟼ (E + E + S) + 5
⟼ (1 + 2 + E) + S ⟼ (E + E + E) + 5
⟼ (1 + 2 + (S)) + S ⟼ (E + E + (S)) + 5
⟼ (1 + 2 + (E + S)) + S ⟼ (E + E + (E + S)) + 5
⟼ (1 + 2 + (3 + S)) + S ⟼ (E + E + (E + E)) + 5
⟼ (1 + 2 + (3 + E)) + S ⟼ (E + E + (E + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + S ⟼ (E + E + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + E ⟼ (E + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + 5 ⟼ (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 15

S ⟼ E + S | E
E ⟼ number | (S)

Loops and Termination
•  Some care is needed when defining CFGs
•  Consider:

–  This grammar has nonterminal definitions that are “nonproductive”.���
(i.e. they don’t mention any terminal symbols)

–  There is no finite derivation starting from S, so the language is empty.

•  Consider:

–  This grammar is productive, but again there is no finite derivation starting from
S, so the language is empty

•  Easily generalize these examples to a “chain” of many nonterminals,
which can be harder to find in a large grammar

•  Upshot: be aware of “vacuously empty” CFG grammars.
–  Every nonterminal should eventually rewrite to an alternative that contains

only terminal symbols.

Zdancewic CIS 341: Compilers 16

S ⟼ E
E ⟼ S

S ⟼ (S)

GRAMMARS FOR
PROGRAMMING LANGUAGES

Zdancewic CIS 341: Compilers 17

Associativity, ambiguity, and precedence.

Associativity

Leftmost derivation:���
S ⟼ E + S ���
 ⟼ 1 + S ���
 ⟼ 1 + E + S ���
 ⟼ 1 + 2 + S ���
 ⟼ 1 + 2 + E ���
 ⟼ 1 + 2 + 3

Rightmost derivation:���
S ⟼ E + S ���
 ⟼ E + E + S ���
 ⟼ E + E + E���
 ⟼ E + E + 3���
 ⟼ E + 2 + 3���
 ⟼ 1 + 2 + 3

CIS 341: Compilers 18

S

E + S

1 E + S

2 E

3
Parse Tree

3

+

1 +

2

AST

S ⟼ E + S | E
E ⟼ number | (S) Consider the input: 1 + 2 + 3

	

Associativity
•  This grammar makes ‘+’ right associative…
•  The abstract syntax tree is the same for both 1 + 2 + 3 and���

1 + (2 + 3)
•  Note that the grammar is right recursive…

•  How would you make ‘+’ left associative?
•  What are the trees for “1 + 2 + 3”?

Zdancewic CIS 341: Compilers 19

S ⟼ E + S | E
E ⟼ number | (S)

Ambiguity
•  Consider this grammar:

•  Claim: it accepts the same set of strings as the previous one.
•  What’s the difference?
•  Consider these two leftmost derivations:

–  S ⟼ S + S ⟼ 1 + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3
–  S ⟼ S + S ⟼ S + S + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3

•  One derivation gives left���
associativity, the other gives���
right associativity to ‘+’
–  Which is which?

CIS 341: Compilers 20

S ⟼ S + S | (S) | number

+

1 +

2 3

+

+ 3

1 2

AST 1 AST 2

Why do we care about ambiguity?
•  The ‘+’ operation is associative, so it doesn’t matter which tree we

pick. Mathematically, x + (y + z) = (x + y) + z
–  But, some operations aren’t associative. Examples?
–  Some operations are only left (or right) associative. Examples?

•  Moreover, if there are multiple operations, ambiguity in the grammar
leads to ambiguity in their precedence

•  Consider:

•  Input: 1 + 2 * 3
–  One parse = (1 + 2) * 3 = 9
–  The other = 1 + (2 * 3) = 7

CIS 341: Compilers 21

*

+ 3

1 2

+

1 *

2 3

vs.

S ⟼ S + S | S * S | (S) | number

Eliminating Ambiguity
•  We can often eliminate ambiguity by adding nonterminals and

allowing recursion only on the left (or right) .
•  Higher-precedence operators go farther from the start symbol.
•  Example:

•  To disambiguate:
–  Decide (following math) to make ‘*’ higher precedence than ‘+’
–  Make ‘+’ left associative
–  Make ‘*’ right associative

•  Note:
–  S2 corresponds to ‘atomic’���

expressions

CIS 341: Compilers 22

S ⟼ S + S | S * S | (S) | number

S0 ⟼ S0 + S1 | S1

S1 ⟼ S2 * S1 | S2

S2 ⟼ number | (S0)

CFGs Summary
•  Context-free grammars allow concise specifications of

programming languages.
–  An unambiguous CFG specifies how to parse: convert a token

stream to a (parse tree)
–  Ambiguity can (often) be removed by encoding precedence and

associativity in the grammar.

•  Even with an unambiguous CFG, there may be more than
one derivation
–  Though all derivations correspond to the same abstract syntax tree.

•  Still to come: finding a derivation
–  But first: yacc

CIS 341: Compilers 23

DEMO: BOOLEAN LOGIC

Zdancewic CIS 341: Compilers 24

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

