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Creating an abstract representation of program syntax. 
 
 
 
 



Today: Parsing 
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Source Code���
(Character stream) 
if (b == 0) { a = 1; }

Backend 
Assembly Code 
l1:
  cmpq %eax, $0  
  jeq l2
  jmp l3
l2:
  …

Abstract Syntax Tree: 
 
 
 
 

Parsing 

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis 
Token stream: 
 
 if ( b == 0 ) { a = 0 ; }

Analysis & 
Transformation 

Intermediate code: 
l1:
  %cnd = icmp eq i64 %b, 0 
  br i1 %cnd, label %l2, 
label %l3  
l2:
  store i64* %a, 1
  br label %l3
l3:



Parsing: Finding Syntactic Structure 
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{
  if (b == 0) a = b;
  while (a != 1) {
    print_int(a);
    a = a – 1;
  }
}

Block 

If While 

Bop 

b == 0 

Bop 

a != 1 

Block 

Expr 

… … 

Call 

… 

…

Source input 

Abstract Syntax tree 



Syntactic Analysis (Parsing): Overview 
•  Input:  stream of tokens   (generated by lexer) 
•  Output:  abstract syntax tree 

•  Strategy: 
–  Parse the token stream to traverse the “concrete” syntax 
–  During traversal, build a tree representing the “abstract” syntax 

•  Why abstract?  Consider these three different concrete inputs: 
a + b
(a + ((b)))
((a) + (b))

•  Note: parsing doesn’t check many things: 
–  Variable scoping, type agreement, initialization, … 
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Bop 

a + b 

Same abstract syntax tree 



Specifying Language Syntax 
•  First question: how to describe language syntax precisely and 

conveniently? 
•  Last time: we described tokens using regular expressions 

–  Easy to implement, efficient DFA representation 
–  Why not use regular expressions on tokens to specify programming 

language syntax? 

•  Limits of regular expressions: 
–  DFA’s have only finite # of states 
–  So… DFA’s can’t “count”  
–  For example, consider the language of all strings that contain balanced 

parentheses – easier than most programming languages, but not regular. 

•  So: we need more expressive power than DFA’s  
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CONTEXT FREE GRAMMARS 
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Context-free Grammars 
•  Here is a specification of the language of balanced parens: 

 
 
 
 

•  The definition is recursive – S mentions itself. 

•  Idea: “derive” a string in the language by starting with S and rewriting 
according to the rules:
–  Example:   S ⟼  (S)S ⟼ ((S)S)S ⟼ ((ε)S)S ⟼ ((ε)S)ε ⟼ ((ε)ε)ε = (()) 

•  You can replace the “nonterminal” S by its definition anywhere 
•  A context-free grammar accepts a string iff there is a derivation from 

the start symbol 
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S ⟼ (S)S 

S ⟼ ε

Note: Once again we ���
have to take care to 
distinguish meta-language 
elements (e.g. “S” and “⟼”) ���
from object-language ���
elements (e.g. “(“ ).* 

* And, since we’re writing this description in English, we are���
careful distinguish the meta-meta-language (e.g. words) from the���
meta-language and object-language (e.g. symbols) by using quotes. 



CFGs Mathematically 
•  A Context-free Grammar (CFG) consists of  

–  A set of terminals   (e.g., a token or ε) 
–  A set of nonterminals  (e.g., S and other syntactic variables) 
–  A designated nonterminal called the start symbol 
–  A set of productions:      LHS ⟼ RHS 

•  LHS is a nonterminal 
•  RHS is a string of terminals and nonterminals 

•  Example:   The balanced parentheses language: 
 
 
 
 
•  How many terminals?  How many nonterminals? Productions?���
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S ⟼ (S)S 

S ⟼ ε



Another Example: Sum Grammar 
•  A grammar that accepts parenthesized sums of numbers: 
 
 
 
 
 

  e.g.:  (1 + 2 + (3 + 4)) + 5 
 
•  Note the vertical bar ‘|’ is shorthand for multiple productions: 

 S ⟼ E + S     4 productions 
 S ⟼ E      2 nonterminals: S, E 
 E ⟼ number   4 terminals: (, ), +, number 
 E ⟼ (S)      Start symbol: S 
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S  ⟼  E + S  |   E 

E  ⟼  number  |   ( S ) 



Derivations in CFGs 
•  Example: derive (1 + 2 + (3 + 4)) + 5 
•  S ⟼ E + S 

⟼ (S) + S 
⟼ (E + S) + S  
⟼ (1 + S) + S      
⟼ (1 + E + S) + S       
⟼ (1 + 2 + S) + S            
⟼ (1 + 2 + E) + S       
⟼ (1 + 2 + (S)) + S      
⟼ (1 + 2 + (E + S)) + S     
⟼ (1 + 2 + (3 + S)) + S    
⟼ (1 + 2 + (3 + E)) + S    
⟼ (1 + 2 + (3 + 4)) + S 
⟼ (1 + 2 + (3 + 4)) + E    
⟼ (1 + 2 + (3 + 4)) + 5       
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S ⟼ E + S  |  E 
E ⟼ number | ( S ) 

For arbitrary strings α, β, γ and 
production rule   A ⟼ β
a single step of the derivation is: 
 

αAγ  ⟼   αβγ
 
( substitute β for an occurrence of A)	  

In general, there are many possible 
derivations for a given string 
 
Note: Underline indicates symbol 
being expanded. 
 



From Derivations to Parse Trees 

•  Tree representation of the 
derivation 

•  Leaves of the tree are 
terminals 
–  In-order traversal yields the 

input sequence of tokens 

•  Internal nodes: nonterminals  
•  No information about the 

order of the derivation steps 

•  (1 + 2 + (3 + 4)) + 5      
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Parse Tree 

4 

S 

E   +   S 

(    S    ) E 

E   +   S 5 

1 E   +   S 

2 E 

(    S    ) 

E   +   S 

3 E S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



From Parse Trees to Abstract Syntax 
•  Parse tree: 
“concrete syntax” 

•  Abstract syntax tree 
(AST): 

•  Hides, or abstracts, 
unneeded information. 
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+ 

1 +

+ 5 

2 +

3 4

4 

S 

E   +   S 

(    S    ) E 

E   +   S 5 

1 E   +   S 
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(    S    ) 

E   +   S 
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Derivation Orders 
•  Productions of the grammar can be applied in any order. 
•  There are two standard orders: 

–  Leftmost derivation: Find the left-most nonterminal and apply a 
production to it. 

–  Rightmost derivation: Find the right-most nonterminal and apply a 
production there. 

•  Note that both strategies (and any other) yield the same 
parse tree! 
–  Parse tree doesn’t contain the information about what order the 

productions were applied. 
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Example: Left- and rightmost derivations 

•  Leftmost derivation:     Rightmost derivation: 
•  S ⟼ E + S       S ⟼ E + S 

⟼ (S) + S         ⟼ E + E 
⟼ (E + S) + S        ⟼ E + 5
⟼ (1 + S) + S        ⟼ (S) + 5
⟼ (1 + E + S) + S       ⟼ (E + S) + 5 
⟼ (1 + 2 + S) + S       ⟼ (E + E + S) + 5
⟼ (1 + 2 + E) + S       ⟼ (E + E + E) + 5 
⟼ (1 + 2 + (S)) + S       ⟼ (E + E + (S)) + 5 
⟼ (1 + 2 + (E + S)) + S         ⟼ (E + E + (E + S)) + 5 
⟼ (1 + 2 + (3 + S)) + S      ⟼ (E + E + (E + E)) + 5 
⟼ (1 + 2 + (3 + E)) + S      ⟼ (E + E + (E + 4)) + 5 
⟼ (1 + 2 + (3 + 4)) + S       ⟼ (E + E + (3 + 4)) + 5 
⟼ (1 + 2 + (3 + 4)) + E       ⟼ (E + 2 + (3 + 4)) + 5 
⟼ (1 + 2 + (3 + 4)) + 5       ⟼ (1 + 2 + (3 + 4)) + 5 
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S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



Loops and Termination 
•  Some care is needed when defining CFGs 
•  Consider: 

–  This grammar has nonterminal definitions that are “nonproductive”.���
(i.e. they don’t mention any terminal symbols) 

–  There is no finite derivation starting from S, so the language is empty. 

•  Consider: 

–  This grammar is productive, but again there is no finite derivation starting from 
S, so the language is empty 

•  Easily generalize these examples to a “chain” of many nonterminals, 
which can be harder to find in a large grammar 

•  Upshot:  be aware of “vacuously empty” CFG grammars. 
–  Every nonterminal should eventually rewrite to an alternative that contains 

only terminal symbols. 
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S ⟼   E 
E ⟼   S 

S ⟼   ( S ) 



GRAMMARS FOR 
PROGRAMMING LANGUAGES 

Zdancewic     CIS 341: Compilers     17 

 
 
 
Associativity, ambiguity, and precedence. 
 
 
 
 



Associativity 

Leftmost derivation:���
S ⟼ E + S ���
 ⟼ 1 + S   ���
 ⟼ 1 + E + S ���
 ⟼ 1 + 2 + S  ���
 ⟼ 1 + 2 + E  ���
 ⟼ 1 + 2 + 3 

Rightmost derivation:���
S ⟼ E + S ���
 ⟼ E + E + S ���
 ⟼ E + E + E���
 ⟼ E + E + 3���
 ⟼ E + 2 + 3���
 ⟼ 1 + 2 + 3  
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S   

E   +   S 

1 E   +   S 

2 E 

3 
Parse Tree 

3

+

1 +

2 

AST 

S ⟼ E + S  |  E 
E ⟼ number | ( S ) Consider the input:    1 + 2 + 3 

	  



Associativity 
•  This grammar makes ‘+’  right associative… 
•  The abstract syntax tree is  the same for both 1 + 2 + 3 and���

1 + (2 + 3) 
•  Note that the grammar is right recursive… 

•  How would you make ‘+’ left associative?   
•  What are the trees for “1 + 2 + 3”? 
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S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



Ambiguity 
•  Consider this grammar: 

•  Claim: it accepts the same set of strings as the previous one. 
•  What’s the difference? 
•  Consider these two leftmost derivations: 

–  S ⟼ S + S ⟼ 1 + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3 
–  S ⟼ S + S ⟼ S + S + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3 

•  One derivation gives left���
associativity, the other gives���
right associativity to ‘+’ 
–  Which is which? 
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S  ⟼   S + S   |  ( S )  |  number 

+

1 +

2 3

+

+ 3

1 2

AST 1 AST 2 



Why do we care about ambiguity? 
•  The ‘+’ operation is associative, so it doesn’t matter which tree we 

pick.  Mathematically,   x + (y + z) = (x + y) + z 
–  But, some operations aren’t associative.    Examples? 
–  Some operations are only left (or right) associative.  Examples? 

•  Moreover, if there are multiple operations, ambiguity in the grammar 
leads to ambiguity in their precedence 

•  Consider:   

•  Input: 1 + 2 * 3 
–  One parse = (1 + 2) * 3 = 9 
–  The other = 1 + (2 * 3) = 7 
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* 

+ 3

1 2

+

1 * 

2 3

vs. 

S  ⟼   S + S   |   S * S  |  ( S )  |  number 



Eliminating Ambiguity 
•  We can often eliminate ambiguity by adding nonterminals and 

allowing recursion only on the left (or right) . 
•  Higher-precedence operators go farther from the start symbol. 
•  Example:   

•  To disambiguate:   
–  Decide (following math) to make ‘*’ higher precedence than ‘+’ 
–  Make ‘+’ left associative 
–  Make ‘*’ right associative 

•  Note: 
–  S2 corresponds to ‘atomic’���

expressions 
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S  ⟼   S + S   |   S * S  |  ( S )  |  number 

S0  ⟼   S0 + S1  |   S1 

S1  ⟼   S2 * S1   |   S2 

S2  ⟼   number  | ( S0 )  



CFGs Summary 
•  Context-free grammars allow concise specifications of 

programming languages. 
–  An unambiguous CFG specifies how to parse: convert a token 

stream to a (parse tree) 
–  Ambiguity can (often) be removed by encoding precedence and 

associativity in the grammar. 

•  Even with an unambiguous CFG, there may be more than 
one derivation  
–  Though all derivations correspond to the same abstract syntax tree. 

•  Still to come:  finding a derivation 
–  But first: yacc 
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DEMO: BOOLEAN LOGIC 
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parser.mly, lexer.mll, range.ml, ast.ml, main.ml 
 
 
 
 
 


