Lecture 10
CIS 341: COMPILERS

Creating an abstract representation of program syntax.

PARSING

Zdancewic CIS 341: Compilers

Today: Parsing

Parsing: Finding Syntactic Structure

Syntactic Analysis (Parsing): Overview

Input: stream of tokens

(generated by lexer)

- Output: abstract syntax tree
- Strategy:
 - Parse the token stream to traverse the "concrete" syntax
 - During traversal, build a tree representing the "abstract" syntax
- Why abstract? Consider these three *different* concrete inputs:

- Note: parsing doesn't check many things:
 - Variable scoping, type agreement, initialization, ...

Specifying Language Syntax

- First question: how to describe language syntax precisely and conveniently?
- Last time: we described tokens using regular expressions
 - Easy to implement, efficient DFA representation
 - Why not use regular expressions on tokens to specify programming language syntax?
- Limits of regular expressions:
 - DFA's have only finite # of states
 - So... DFA's can't "count"
 - For example, consider the language of all strings that contain balanced parentheses easier than most programming languages, but not regular.
- So: we need more expressive power than DFA's

CONTEXT FREE GRAMMARS

Zdancewic CIS 341: Compilers

Context-free Grammars

• Here is a specification of the language of balanced parens:

$$S \longmapsto (S)S$$
$$S \longmapsto \varepsilon$$

Note: Once again we have to take care to distinguish meta-language elements (e.g. "S" and " \mapsto ") from object-language elements (e.g. "(").*

- The definition is *recursive* S mentions itself.
- Idea: "derive" a string in the language by starting with S and rewriting according to the rules:

- Example: $S \mapsto (S)S \mapsto ((S)S)S \mapsto ((\epsilon)S)S \mapsto ((\epsilon)S)\epsilon \mapsto ((\epsilon)\epsilon)\epsilon = (())$

- You can replace the "nonterminal" S by its definition anywhere
- A context-free grammar accepts a string iff there is a derivation from the start symbol

8

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the *start symbol*
 - A set of productions: $LHS \mapsto RHS$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \longmapsto (S)S$$
$$S \longmapsto \varepsilon$$

• How many terminals? How many nonterminals? Productions?

Another Example: Sum Grammar

• A grammar that accepts parenthesized sums of numbers:

e.g.: (1 + 2 + (3 + 4)) + 5

• Note the vertical bar '|' is shorthand for multiple productions:

 $S \mapsto E + S$ $S \mapsto E$ $E \mapsto number$ $E \mapsto (S)$

4 productions 2 nonterminals: S, E 4 terminals: (,), +, number Start symbol: S

Derivations in CFGs

- Example: derive (1 + 2 + (3 + 4)) + 5
- $\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}} + \mathbf{S}$
 - $\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$
 - $\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 - $\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$
 - $\longmapsto (1 + \underline{\mathbf{E}} + S) + S$
 - $\mapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$
 - $\mapsto (1 + 2 + \mathbf{E}) + \mathbf{S}$
 - $\longmapsto (1 + 2 + (\underline{\mathbf{S}})) + S$
 - $\mapsto (1 + 2 + (\underline{\mathbf{E}} + S)) + S$
 - $\mapsto (1 + 2 + (3 + \underline{\mathbf{S}})) + \mathbf{S}$
 - $\mapsto (1 + 2 + (3 + \underline{\mathbf{E}})) + \mathbf{S}$ $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{S}}$
 - $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{E}}$ $\mapsto (1 + 2 + (3 + 4)) + 5$

 $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

For arbitrary strings α , β , γ and production rule $A \mapsto \beta$ a single step of the derivation is:

 $\alpha A\gamma \mapsto \alpha \beta\gamma$

(*substitute* β for an occurrence of A)

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.

From Derivations to Parse Trees

- Tree representation of the derivation
- Leaves of the tree are terminals
 - In-order traversal yields the input sequence of tokens
- Internal nodes: nonterminals
- No information about the *order* of the derivation steps
- (1 + 2 + (3 + 4)) + 5

Derivation Orders

- Productions of the grammar can be applied in any order.
- There are two standard orders:
 - *Leftmost derivation*: Find the left-most nonterminal and apply a production to it.
 - *Rightmost derivation*: Find the right-most nonterminal and apply a production there.
- Note that both strategies (and any other) yield the same parse tree!
 - Parse tree doesn't contain the information about what order the productions were applied.

Example: Left- and rightmost derivations

• Leftmost derivation:

٠

$$\underline{S} \mapsto \underline{E} + S$$

$$\mapsto (\underline{S}) + S$$

$$\mapsto (\underline{E} + S) + S$$

$$\mapsto (1 + \underline{S}) + S$$

$$\mapsto (1 + \underline{E} + S) + S$$

$$\mapsto (1 + 2 + \underline{S}) + S$$

$$\mapsto (1 + 2 + \underline{S}) + S$$

$$\mapsto (1 + 2 + (\underline{S})) + S$$

$$\mapsto (1 + 2 + (\underline{S})) + S$$

$$\mapsto (1 + 2 + (\underline{S})) + S$$

$$\mapsto (1 + 2 + (3 + \underline{S})) + S$$

$$\mapsto (1 + 2 + (3 + \underline{S})) + S$$

$$\mapsto (1 + 2 + (3 + 4)) + S$$

$$\mapsto (1 + 2 + (3 + 4)) + \underline{S}$$

$$\mapsto (1 + 2 + (3 + 4)) + \underline{S}$$

$$\mapsto (1 + 2 + (3 + 4)) + 5$$

Rightmost derivation:

$$\underline{S} \mapsto E + \underline{S}$$

$$\mapsto E + \underline{E}$$

$$\mapsto E + 5$$

$$\mapsto \underline{E} + 5$$

$$\mapsto (\underline{S}) + 5$$

$$\mapsto (E + \underline{S}) + 5$$

$$\mapsto (E + E + \underline{S}) + 5$$

$$\mapsto (E + E + \underline{E}) + 5$$

$$\mapsto (E + E + (\underline{S})) + 5$$

$$\mapsto (E + E + (E + \underline{S})) + 5$$

$$\mapsto (E + E + (E + \underline{E})) + 5$$

$$\mapsto (E + E + (E + \underline{E})) + 5$$

$$\mapsto (E + E + (E + \underline{A})) + 5$$

$$\mapsto (E + \underline{E} + (3 + 4)) + 5$$

$$\mapsto (\underline{E} + 2 + (3 + 4)) + 5$$

$$\mapsto (1 + 2 + (3 + 4)) + 5$$

Loops and Termination

- Some care is needed when defining CFGs ۰
- Consider:

- This grammar has nonterminal definitions that are "nonproductive". (i.e. they don't mention any terminal symbols)
- There is no finite derivation starting from S, so the language is empty.
- Consider: $S \mapsto (S)$ •

- This grammar is productive, but again there is no finite derivation starting from S, so the language is empty
- Easily generalize these examples to a "chain" of many nonterminals, • which can be harder to find in a large grammar
- Upshot: be aware of "vacuously empty" CFG grammars. ٠
 - Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.

Associativity, ambiguity, and precedence.

GRAMMARS FOR PROGRAMMING LANGUAGES

Associativity

Consider the input: 1 + 2 + 3

Leftmost derivation: Rightmost derivation:

 $S \mapsto E + S \mid E$

 $E \mapsto number \mid (S)$

Parse Tree

Associativity

- This grammar makes '+' *right associative*...
- The abstract syntax tree is the same for both 1 + 2 + 3 and 1 + (2 + 3)
- Note that the grammar is *right recursive*...

 $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

- How would you make '+' left associative?
- What are the trees for "1 + 2 + 3"?

Ambiguity

• Consider this grammar:

 $S \mapsto S + S \mid (S) \mid number$

- Claim: it accepts the *same* set of strings as the previous one.
- What's the difference?
- Consider these *two* leftmost derivations:

$$- \underline{\mathbf{S}} \mapsto \underline{\mathbf{S}} + \mathbf{S} \mapsto \mathbf{1} + \underline{\mathbf{S}} \mapsto \mathbf{1} + \underline{\mathbf{S}} + \mathbf{S} \mapsto \mathbf{1} + \mathbf{2} + \underline{\mathbf{S}} \mapsto \mathbf{1} + \mathbf{2} + \mathbf{3}$$

- $\underline{\mathbf{S}} \mapsto \underline{\mathbf{S}} + \mathbf{S} \mapsto \underline{\mathbf{S}} + \mathbf{S} + \mathbf{S} \mapsto \mathbf{1} + \underline{\mathbf{S}} + \mathbf{S} \mapsto \mathbf{1} + \mathbf{2} + \underline{\mathbf{S}} \mapsto \mathbf{1} + \mathbf{2} + \mathbf{3}$
- One derivation gives left associativity, the other gives right associativity to '+'
 - Which is which?

Why do we care about ambiguity?

- The '+' operation is associative, so it doesn't matter which tree we pick. Mathematically, x + (y + z) = (x + y) + z
 - But, some operations aren't associative. Examples?
 - Some operations are only left (or right) associative. Examples?
- Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their *precedence*
- Consider:

$$S \mapsto S + S | S * S | (S) | number$$
Input: 1 + 2 * 3
- One parse = (1 + 2) * 3 = 9
- The other = 1 + (2 * 3) = 7 + 3 vs. 1 *
1 2 2 3

Eliminating Ambiguity

- We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right) .
- Higher-precedence operators go *farther* from the start symbol.
- Example:

 $S \mapsto S + S \mid S * S \mid (S) \mid number$

- To disambiguate:
 - Decide (following math) to make '*' higher precedence than '+'
 - Make '+' left associative
 - Make '*' right associative
- Note:
 - S₂ corresponds to 'atomic' expressions

CFGs Summary

- Context-free grammars allow concise specifications of programming languages.
 - An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 - Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.
- Even with an unambiguous CFG, there may be more than one derivation
 - Though all derivations correspond to the same abstract syntax tree.
- Still to come: finding a derivation
 - But first: yacc

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC

Zdancewic CIS 341: Compilers