Lecture 10

CIS 341: COMPILERS

Creating an abstract representation of program syntax.

PARSING

Zdancewic CIS 341: Compilers

Today: Parsing

Source Code
(Character stream)

if (b ==0) { a=1; }
Token stream:
if| (| bl==101])1|¢4
Abstract Syntax Tree:
Intermediate code:
11:
gcnd = icmp eq 164 %b, 0
IJC)IIEE br il %cnd, label %12,
label %13
12:
store i64* %a, 1
br label %13
13:

Assembly Code
11:

cmpg %eax, $0 <

jeq 12
jmp 13
12:

Parsing: Finding Syntactic Structure

{
if (b == 0) a = b;
while (a != 1) {
print int(a);
a=a-—1;

} Block

} Source input
While

Bop Bop Block
Expr

b == |0 a |= 1 p\
Call

Abstract Syntax tree I

CIS 341: Compilers

Syntactic Analysis (Parsing): Overview

Input: stream of tokens (generated by lexer)

Output: abstract syntax tree

Strategy:
— Parse the token stream to traverse the “concrete” syntax
— During traversal, build a tree representing the “abstract” syntax

Why abstract? Consider these three different concrete inputs:

—

a+ b Bop
(a + ((b))) ~— Same abstract syntax tree

((a) + (b))

- a + b

Note: parsing doesn’t check many things:
— Variable scoping, type agreement, initialization, ...

CIS 341: Compilers

Specifying Language Syntax

First question: how to describe language syntax precisely and
conveniently?
Last time: we described tokens using regular expressions

— Easy to implement, efficient DFA representation

— Why not use regular expressions on tokens to specify programming
language syntax?

Limits of regular expressions:
— DFA’s have only finite # of states
— So... DFA’s can’t “count”

— For example, consider the language of all strings that contain balanced
parentheses — easier than most programming languages, but not regular.

So: we need more expressive power than DFA's

CIS 341: Compilers

CONTEXT FREE GRAMMARS

Zdancewic CIS 341: Compilers

Context-free Grammars

« Here is a specification of the language of balanced parens:

Note: Once again we

S —> (S)S have to take care to

distinguish meta-language
elements (e.g. “S” and “+—")

S — € from object-language
elements (e.g. “(“).*

 The definition is recursive — S mentions itself.

 ldea: “derive” a string in the language by starting with S and rewriting
according to the rules:

— Example: S+ (S)S +— ((S)S)S — ((e)S)S — ((e)S)e — ((e)e)e = (()

* You can replace the “nonterminal” S by its definition anywhere

* A context-free grammar accepts a string iff there is a derivation from
the start symbol

* And, since we're writing this description in English, we are
CIS 341: Compilers careful distinguish the meta-meta-language (e.g. words) from the 8
meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically

* A Context-free Grammar (CFG) consists of
— A set of terminals (e.g., a token or ¢)
— Aset of nonterminals (e.g., S and other syntactic variables)
— A designated nonterminal called the start symbol
— A set of productions: LHS + RHS

* LHS is a nonterminal
* RHS is a string of terminals and nonterminals

* Example: The balanced parentheses language:

S +— (S)S

S ¢

« How many terminals? How many nonterminals? Productions?

CIS 341: Compilers

Another Example: Sum Grammar

« A grammar that accepts parenthesized sums of numbers:

S— E+S | E

E — number | (S)

eg: (1+2+3+4)+5

» Note the vertical bar ‘|" is shorthand for multiple productions:

S—E+S
S— E

E +— number
E+— (S)

CIS 341: Compilers

=5

4 productions
2 nonterminals: S, E

4 terminals: (,), +, number
Start symbol: S

10

Derivations in CFGs

* Example: derive (1 +2 + (3 +4)) +5 S—E+S | E

. S|—>E+S E +— number | (S)
— (§) +
— (E + 3) +S For arbitrary strings o, , y and
— (1+S)+5 production rule A+ f
(1 4E+9) 45 a single step of the derivation is:
—(1T+2+8 +S aAy — ofy
—(1+2+E+S
— (1+2+(S)+S (substitute B for an occurrence of A)
—(1T+2+E+S)+S
—((1T+2+3+9)+S | | th ol

n general, there are many possible

= +2+0+B)+5 derivations for a given string
—((1T+2+3+4)+S
— (1+2+3+4)+E Note: Underline indicates symbol
— (1+2+3+4)+5 being expanded.

CIS 341: Compilers

11

From Derivations to Parse Trees

S
* Tree representation of the N
derivation /IE\+ S
|
e Leaves of the tree are R
terminals A
— In-order traversal yields the E+ 505
input sequence of tokens 1' E/l+\S Parse Tree
e Internal nodes: nonterminals | |
 No information about the 2 /'IE\
order of the derivation steps (S)
TN
E + S
e (1T+2+3+4)+5 | |
S—E+S | E 3 E

E +— number | (S) |
CIS 341: Compilers 4 12

From Parse Trees to Abstract Syntax

* Parse tree: /?\ * Abstract syntax tree
“concrete syntax” g . ¢ (AST):
TN
s) E N
O N + 5
E + S 5 /\
1| E/l+\S | > 1+
| | N
) F 2 +
AN N
(S)
A | 3 4
E + S * Hides, or abstracts,
; 'E unneeded information.

CIS 341: Compilers 4 13

Derivation Orders

* Productions of the grammar can be applied in any order.

 There are two standard orders:

— Leftmost derivation: Find the left-most nonterminal and apply a
production to it.

— Rightmost derivation: Find the right-most nonterminal and apply a
production there.

 Note that both strategies (and any other) yield the same
parse tree!

— Parse tree doesn’t contain the information about what order the
productions were applied.

CIS 341: Compilers 14

Example: Left- and rightmost derivations

Leftmost derivation: Rightmost derivation:
e« S—E+S S—E+S
(S)-I—S |—>E+E Sl—>E+S|E
— (E+S) +S — E + 5 E +— number | (S
— (T +S)+S — (S) + 5
— (1 +E+S)+S — (E+9S)+5
— (1 +2+985 +S — (E+E+S)+5
— (T+2+E+S — (E+E+E)+5
— (T+2+(5)+S — (E+E+(S)+5
— (1T+2+(E+YS)) + — (E+E+(E+S) +
— (1+2+3+9) + — (E+E+(E+E) +
|—>(1+2+(3+E))+S — (E+E+(E+4)) +
— (1T+2+3+4)+S — (E+E+ (3 +4)) +
— (1T+2+3+4)+E — E+2+03+4)+
— (1T+2+3+4)+5 |—>(1+2+(3+4))+5

CIS 341: Compilers 15

Loops and Termination

Some care is needed when defining CFGs

Consider:
S— E

E— S

— This grammar has nonterminal definitions that are “nonproductive”.
(i.e. they don’t mention any terminal symbols)

— There is no finite derivation starting from S, so the language is empty.
Consider: S+ (S)

— This grammar is productive, but again there is no finite derivation starting from
S, so the language is empty

Easily generalize these examples to a “chain” of many nonterminals,
which can be harder to find in a large grammar

Upshot: be aware of “vacuously empty” CFG grammars.

— Every nonterminal should eventually rewrite to an alternative that contains
only terminal symbols.

Zdancewic CIS 341: Compilers 16

Associativity, ambiguity, and precedence.

GRAMMARS FOR
PROGRAMMING LANGUAGES

Zdancewic CIS 341: Compilers

Associativity

S—E+S | E
E +— number | (S)

Consider the input: 1 +2 +3

Leftmost derivation: Rightmost derivation:

S E+S S E+$ AN
— 1 +8S — E+E+S E + S
— 1+E+S — E+E+E AT\
— 1T+2+8S — E+E+ 3 1 '|5+S
— 1 +2+E — E+2+3) llz
— 1 +2+3 — 1 +2+3 |
3
n Parse Tree
N
1 + AST
RN

CIS 341: Compilers 18

Associativity

 This grammar makes ‘+’ right associative...

* The abstract syntax tree is the same for both 1 + 2 + 3 and
1T+(2+3)

* Note that the grammar is right recursive...

S—E+S | E
E +— number | (S)

* How would you make ‘+’ left associative?
« What are the trees for “1 + 2 + 3”¢

Zdancewic CIS 341: Compilers 19

Ambiguity
 Consider this grammar:
S+ S+S | (S) | number

« Claim: it accepts the same set of strings as the previous one.
* What's the difference?
 Consider these two leftmost derivations:

- S$S—>S8$+5—1+8S—>1+8+5S5—>T1T+2+8S—1+2+3
- S$S—S+5S5—>S5+S5S+S—1T+S+S—=1+2+S—1+2+3

* One derivation gives left + +
associativity, the other gives RN RN
right associativity to '+’ + 3 1 4

— Which is which? N PN
AST T AST 2

CIS 341: Compilers 20

Why do we care about ambiguity?

« The '+’ operation is associative, so it doesn’t matter which tree we
pick. Mathematically, x+(y+2z)=(Xx+vy)+z

— But, some operations aren’t associative. Examples?
— Some operations are only left (or right) associative. Examples?

* Moreover, if there are multiple operations, ambiguity in the grammar
leads to ambiguity in their precedence

« Consider:

S+— S+S | S*S | (S) | number

 Input: T+2*3 . +
— Oneparse=(1+2)*3=9 P N
— Theother=1+2*3)=7 4 3 VS, 1 *
/\ /\
1 2 2 3

CIS 341: Compilers 21

Eliminating Ambiguity

« We can often eliminate ambiguity by adding nonterminals and
allowing recursion only on the left (or right) .

 Higher-precedence operators go farther from the start symbol.
« Example:

S+— S+S | S*S | (S) | number

« To disambiguate:
— Decide (following math) to make ‘*" higher precedence than '+’
— Make ‘+’ left associative
— Make *’ right associative

« Note: S0 7 S+ 5 Sy
— S, corresponds to ‘atomic’ S, — S5, *§; S,
expressions S, — number (S))

CIS 341: Compilers 22

CFGs Summary

 Context-free grammars allow concise specifications of
programming languages.
— An unambiguous CFG specifies how to parse: convert a token
stream to a (parse tree)

— Ambiguity can (often) be removed by encoding precedence and
associativity in the grammar.

 Even with an unambiguous CFG, there may be more than
one derivation
— Though all derivations correspond to the same abstract syntax tree.

» Still to come: finding a derivation
— But first: yacc

CIS 341: Compilers 23

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC

Zdancewic CIS 341: Compilers

24

