
CIS 341: COMPILERS 
Lecture 16 



Announcements 
•  Reminder: HW4 Compiling OAT v.1 
•  DUE: Thursday, March 26th 
•  START TODAY! (IF YOU HAVEN’T ALREADY) 
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ENVIRONMENT-BASED 
INTERPRETERS 
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See fun.ml  Eval2 and Eval3 
dynamic scoping vs. static scoping 
 
 



CLOSURE CONVERSION 

Zdancewic     CIS 341: Compilers     4 

 
 
 
 
 

 
Compiling lambda calculus to straight-line code. 
Representing evaluation environments at runtime.���
���
 

 
 
 



Compiling First-class Functions 

•  To implement first-class functions on a processor, there are two 
problems: 
–  First: we must implement substitution of free variables 
–  Second: we must separate ‘code’ from ‘data’ 

•  Reify the substitution: 
–  Move substitution from the meta language to the object language by 

making the data structure & lookup operation explicit 
–  The environment-based interpreter is one step in this direction 

•  Closure Conversion:  
–  Eliminates free variables by packaging up the needed environment in the 

data structure. 

•  Hoisting: 
–  Separates code from data, pulling closed code to the top level. 
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Example of closure creation 
•  Recall the “add” function:���

let add = fun x -> fun y -> x + y
 
•  Consider the inner function:  fun y -> x + y

•  When run the function application:  add 4  
the program builds a closure and returns it. 
–  The closure is a pair of the environment and a code pointer. 

•  The code pointer takes a pair of parameters: env and y 
–  The function code is (essentially):���

 fun (env, y) -> let x = nth env 0 in x + y
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ptr Code(env, y, body)

(4) code body 



Representing Closures 
•  As we saw, the simple closure conversion algorithm doesn’t generate  

very efficient code. 
–  It stores all the values for variables in the environment, ���

even if they aren’t needed by the function body. 
–  It copies the environment values each time a nested closure is created. 
–  It uses a linked-list datastructure for tuples. 

•  There are many options: 
–  Store only the values for free variables in the body of the closure. 
–  Share subcomponents of the environment to avoid copying 
–  Use vectors or arrays rather than linked structures 
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Array-based Closures with N-ary Functions 
(fun (x y z) ->

(fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z 
n,m 

p 

nil x y z

nxt n m

nxt p +

Closure B 

env code

Closure A 

Closure B 

env code

Closure A 

app

1,0

Note how free 
variables are 
“addressed” 
relative to the 
closure due to 
shared env.   

“follow 1 nxt���
  ptr then look���
  up index 0” 

“follow 2 nxt���
  ptrs then look���
  up index 2” 



BACK TO TYPECHECKING 
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Type Checking / Static Analysis 
•  Recall the interpreter from the Eval3 module: 
let rec eval env e =
  match e with
  | …
  | Add (e1, e2) ->

  (match (eval env e1, eval env e2) with
     | (IntV i1, IntV i2) -> IntV (i1 + i2)
     | _ -> failwith "tried to add non-integers")

  | …

•  The interpreter might fail at runtime. 
–  Not all operations are defined for all values (e.g. 3/0,  3 + true, …) 

•  A compiler can’t generate sensible code for this 
case. 
–  A naïve implementation might “add” an integer and a pointer 
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Notes about this Typechecker 
•  In the interpreter, we only evaluate the body of a function when it's 

applied. 
•  In the typechecker, we always check the body of the function (even if 

it's never applied.) 
–  Because of this, we must assume the input has some type (say t1) and 

reflect this in the type of the function ���
(t1 -> t2). 

•  Dually, at a call site (e1 e2), we don't know what closure we're going 
to get.  
–  But we can calculate e1's type, check that e2 is an argument of the right 

type, and also determine what type e1 will return. 

•  Question:  Why is this an approximation? 
•  Question: What if well_typed always returns false? 



Type Judgments 
•  In the judgment:   E ⊢ e : t   

–  E is a typing environment or a type context 
–  E maps variables to types.  It is just a set of bindings of the form:   ���

x1 : t1, x2 : t2, …, xn : tn 

•  For example:      x : int, b : bool ⊢ if (b) 3 else x : int 

•  What do we need to know to decide whether “if (b) 3 else x” has type 
int in the environment x : int, b : bool? 
–  b must be a bool   i.e.   x : int, b : bool ⊢ b : bool 
–  3 must be an int   i.e.   x : int, b : bool ⊢ 3 : int 
–  x must be an int   i.e.   x : int, b : bool ⊢ x : int 
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Simply-typed Lambda Calculus 
•  For the language in “tc.ml” we have five inference rules: 

•  Note how these rules correspond to the code. 
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E ⊢ i : int 

E ⊢ e1 : int   E ⊢ e2 : int 
 

E ⊢ e1 + e2 : int 

x : T  ∈  E 
  

E ⊢ x : T 

E, x : T ⊢ e : S 
 

E ⊢ fun (x:T) -> e  : T -> S 

E ⊢ e1 : T -> S  E ⊢ e2 : T  
 

E ⊢ e1 e2 : S 

INT VAR ADD 

FUN APP 



Type Checking Derivations 
•  A derivation or proof tree has (instances of) judgments as its nodes and 

edges that connect premises to a conclusion according to an inference 
rule.   

•  Leaves of the tree are axioms (i.e. rules with no premises) 
–  Example: the INT rule is an axiom 

•  Goal of the typechecker: verify that such a tree exists. 
•  Example:  Find a tree for the following program using the inference 

rules on the previous slide: 
                             ���

                                ⊢ (fun (x:int) -> x + 3) 5  : int 
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Example Derivation Tree  

•  Note: the OCaml function typecheck verifies the existence of this 
tree.  The structure of the recursive calls when running typecheck is 
the same shape as this tree!  

•  Note that  x : int  ∈  E is implemented by the function lookup
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⊢ (fun (x:int) -> x + 3) 5  : int 

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int  

x : int ⊢ x + 3 : int 

x : int ⊢ x  : int x : int ⊢ 3  : int 

x : int  ∈  x : int 

APP 

INT 

INT VAR 

ADD 

FUN 



Arrays 
•  Array constructs are not hard either, here is one possibility 
•  First: add a new type constructor:  T[] 

CIS 341: Compilers 16 

E ⊢ e1 : int    E ⊢ e2 : T 
 

E ⊢ new T[e1](e2)  : T[]  

NEW 
e1 is the size of the newly 
allocated array.  e2 is 
initializes the elements of 
the array. 

E ⊢ e1 : T[]    E ⊢ e2 : int 
 

E ⊢ e1[e2]  : T  

INDEX 

Note:  These rules don’t 
ensure that the array index 
is in bounds – that should 
be checked dynamically. E ⊢ e1 : T[]    E ⊢ e2 : int   E ⊢ e3 : T 

 
E ⊢ e1[e2] = e3 ok  

UPDATE 



Tuples 
•  ML-style tuples with statically known number of products: 
•  First: add a new type constructor:  T1 * … * Tn 
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E ⊢ e1 : T1    …    E ⊢ en : Tn 
 

E ⊢ (e1, …, en) : T1 * … * Tn  

TUPLE 

E ⊢ e : T1 * … * Tn    1 ≤ i ≤ n 
 

E ⊢ #i e  :  Ti 

PROJ 



References 
•  ML-style references (note that ML uses only expressions) 
•  First, add a new type constructor: T ref 
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E ⊢ e : T 
 

E ⊢ ref e : T ref  

REF 

E ⊢ e : T ref 
 

E ⊢ !e  : T  

DEREF 

Note the similarity with the 
rules for arrays… E ⊢ e1 : T ref    E ⊢ e2 : T 

 
E ⊢ e1 := e2  : unit  

ASSIGN 



Recursive Definitions 
•  Consider the ML factorial function: 

let rec fact (x:int) : int = 
   if (x == 0) 1 else x * fact(x-1)

•  Note that the function name fact appears inside the body of fact’s 
definition! 

•  To typecheck the body of fact, we must assume that the type of fact is 
already known. 

                       
      

•  In general: Collect the names and types of all mutually recursive 
definitions, add them all to the context E before checking any of the 
definition bodies. 

•  Often useful to separate the “global context” from the “local context” 
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E, fact : int -> int, x : int  ⊢ ebody : int 
 

E ⊢ int fact(int x) ( ebody) : int -> int 



TYPES, MORE GENERALLY 
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���
Beyond describing “structure”… describing “properties” 
Types as sets 
Subsumption���
 
 



What are types, anyway? 
•  A type is just a predicate on the set of values in a system. 

–  For example, the type “int” can be thought of as a boolean function that 
returns “true” on integers and “false” otherwise. 

–  Equivalently, we can think of a type as just a subset of all values. 

•  For efficiency and tractability, the predicates are usually taken to be 
very simple. 
–  Types are an abstraction mechanism 

•  We can easily add new types that distinguish different subsets of 
values: 

type tp =
    | IntT                 (* type of integers *)
    | PosT | NegT | ZeroT  (* refinements of ints *)
    | BoolT                (* type of booleans *)
    | TrueT | FalseT       (* subsets of booleans *)
    | AnyT                 (* any value *)
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Modifying the typing rules 
•  We need to refine the typing rules too… 
•  Some easy cases:    

–  Just split up the integers into their more refined cases: 

 

•  Same for booleans: 
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i > 0 
 

E ⊢ i : Pos 

P-INT 

i < 0 
 

E ⊢ i : Neg 

N-INT ZERO 

E ⊢ 0 : Zero 

TRUE 

E ⊢ true : True 

FALSE 

E ⊢ false : False 



What about “if”? 
•  Two cases are easy: 

•  What happens when we don’t know statically which branch will be 
taken? 

•  Consider the typechecking problem:���
 

                                   x:bool ⊢ if (x) 3 else -1 : ? 
 
•  The true branch has type Pos  and the false branch has type Neg. 

–  What should be the result type of the whole if? 
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E ⊢ e1 : True   E ⊢ e2 : T   
 

E ⊢ if (e1) e2 else e3 : T  

E ⊢ e1 : False   E ⊢ e3 : T   
 

E ⊢ if (e1) e2 else e3 : T  

IF-T IF-F 



Subtyping and Upper Bounds 
•  If we think of types as sets of values, we have a natural inclusion 

relation:   Pos ⊆ Int 
•  This subset relation gives rise to a subtype relation:  Pos <: Int 
•  Such inclusions give rise to a subtyping hierarchy: 

•  Given any two types T1 and T2, we can calculate their least upper 
bound (LUB) according to the hierarchy. 
–  Example:  LUB(True, False) = Bool,  LUB(Int, Bool) = Any 
–  Note: might want to add types for “NonZero”, “NonNegative”, and 

“NonPositive” so that set union on values corresponds to taking LUBs on 
types. 
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Any 

Int 

Neg Zero Pos 

Bool 

True False 

<: :> 

:>
 



“If” Typing Rule Revisited 
•  For statically unknown conditionals, we want the return value to be 

the LUB of the types of the branches: 

•  Note that LUB(T1, T2) is the most precise type (according to the 
hierarchy) that is able to describe any value that has either type T1 or 
type T2. 

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁  T2 
•  LUB is also called the join operation. 
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E ⊢ e1 : bool   E ⊢ e2 : T1    E ⊢ e3 : T2 
 

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)  

IF-BOOL 



Subtyping Hierarchy 
•  A subtyping hierarchy: 

•  The subtyping relation is a partial order: 
–  Reflexive:  T <: T    for any type T 
–  Transitive:   T1 <: T2  and T2 <: T3 then T1 <: T3 

–  Antisymmetric:  It T1 <: T2 and T2 <: T1 then T1 = T2 

CIS 341: Compilers 26 

Any 

Int 

Neg Zero Pos 

Bool 

True False 

<: :> 

:>
 



Soundness of Subtyping Relations 
•  We don’t have to treat every subset of the integers as a type. 

–  e.g., we left out the type NonNeg 

•  A subtyping relation T1 <: T2 is sound if it approximates the underlying 
semantic subset relation. 

•  Formally:  write ⟦T⟧ for the subset of (closed) values of type T 
–  i.e. ⟦T⟧ = {v | ⊢ v : T} 
–  e.g.   ⟦Zero⟧ = {0},  ⟦Pos⟧ = {1, 2, 3, …} 

•  If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound. 
–  e.g.  Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...} 
–  e.g.  Int <: Pos is not sound, since it is not the case that 

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…} 
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Soundness of LUBs 
•  Whenever you have a sound subtyping relation, it follows that:    

     ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧ 
–  Note that the LUB is an over approximation of the “semantic union” 
–  Example:   ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇ 
     {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧ 
 

•  Using LUBs in the typing rules yields sound approximations of the 
program behavior (as if the IF-B rule). 

•  It just so happens that LUBs on types <: Int correspond to +   
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E ⊢ e1 : T1   E ⊢ e2 : T2    T1 <: Int    T2 <: Int 
 

E ⊢ e1 + e2 : T1 ⋁ T2 

ADD 



Subsumption Rule 
•  When we add subtyping judgments of the form  T <: S we can 

uniformly integrate it into the type system generically: 

•  Subsumption allows any value of type T to be treated as an S 
whenever T <: S. 

•  Adding this rule makes the search for typing derivations more difficult 
– this rule can be applied anywhere, since T <: T. 
–  But careful engineering of the typing system can incorporate the 

subsumption rule into a deterministic algorithm.  
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E ⊢ e : T    T <: S 
 

E ⊢ e : S 

SUBSUMPTION 



Downcasting 
•  What happens if we have an Int but need something of type Pos? 

–  At compile time, we don’t know whether the Int is greater than zero. 
–  At run time, we do. 

•  Add a “checked downcast” 

•  At runtime, ifPos checks whether e1 is > 0.  If so, branches to e2 and 
otherwise branches to e3. 

•  Inside the expression e2, x is the name for e1’s value, which is known 
to be strictly positive because of the dynamic check. 

•  Note that such rules force the programmer to add the appropriate 
checks 
–  We could give integer division the type:   Int -> NonZero -> Int 
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E ⊢ e1 : Int      E, x : Pos ⊢ e2 : T2      E ⊢ e3 : T3    
���

E ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3 



SUBTYPING OTHER TYPES 
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Extending Subtyping to Other Types 
•  What about subtyping for tuples? 

–  Intuition: whenever a program expects���
something of type S1 * S2, it is sound ���
to give it a T1 * T2. 

–  Example:  (Pos * Neg) <: (Int * Int) 

 

•  What about functions? 

•  When  is   T1 -> T2   <:  S1 -> S2     ? 
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T1 <: S1    T2 <: S2 
 

(T1 * T2) <: (S1 * S2) 



Subtyping for Function Types 
•  One way to see it: 

 

•  Need to convert an S1 to a T1 and T2 to S2, so the argument type is 
contravariant and the output type is covariant. 
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Expected function 

Actual function S1 S2 T1 T2 

S1 <: T1    T2 <: S2 
 

(T1 -> T2) <: (S1 -> S2) 



Immutable Records 
•  Record type:  {lab1:T1; lab2:T2; … ; labn:Tn} 

–  Each labi is a label drawn from a set of identifiers. 
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E ⊢ e1 : T1   E ⊢ e2 : T2    …    E ⊢ en : Tn
 

 
E ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn} 

RECORD 

E ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}  

E ⊢ e.labi : Ti 

PROJECTION 



Immutable Record Subtyping 
•  Depth subtyping: 

–  Corresponding fields may be subtypes 

•  Width subtyping: 
–  Subtype record may have more fields: 
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T1 <: U1  T2 <: U2  …    Tn <: Un 
 

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}  

DEPTH 

m ≤ n 
 

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}  

WIDTH 



Immutable Record Subtyping (cont’d) 
•  Width subtyping assumes an implementation in which order of fields 

in a record matters:���
        {x:int; y:int}   ≠  {y:int; x:int} 

•  But:   {x:int; y:int; z:int} <: {x:int; y:int} 
–  Implementation: a record is a struct, subtypes just add fields at the end of 

the struct. 

•  Alternative: allow permutation of record fields:���
       {x:int; y:int} = {y:int; x:int} 
–  Implementation: compiler sorts the fields before code generation. 
–  Need to know all of the fields to generate the code 

•  Permutation is not directly compatible with width subtyping: 
     {x:int; z:int; y:int} = {x:int; y:int; z:int}  </:  {y:int; z:int} 
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If you want both: 
•  If you want permutability & dropping, you need to either copy (to 

rearrange the fields) or use a dictionary like this: 

p =  {x=42; y=55; z=66}:{x:int; y:int; z:int} 

q : {y:int; z:int} = p 

x y z 

42 55 66 

y z 

dictionary 

dictionary 



Subtyping and References 
•  What is the proper subtyping relationship for references and arrays? 

•  Suppose we have NonZero as a type and the division operation has 
type:   Int -> NonZero -> Int 
–  Recall that NonZero <: Int 

•  Should     (NonZero ref) <: (Int ref)   ? 
•  Consider this program: 

Int bad(NonZero ref r) {
  Int ref a = r;   (* OK because (NonZero ref <: Int ref*)
  a := 0;          (* OK because 0 : Zero <: Int *)
  return (42 / !r) (* OK because !r has type NonZero *)
}      
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Mutable Structures are Invariant 
•  Covariant reference types are unsound  

–  As demonstrated in the previous example 

•   Contravariant reference types are also unsound 
–  i.e. If T1 <: T2 then ref T2 <: ref T1  is also unsound 
–  Exercise: construct a program that breaks contravariant references. 

•  Moral: Mutable structures are invariant:  ���
           T1 ref <: T2 ref    implies   T1 = T2 

•  Same holds for arrays, OCaml-style mutable records, object fields, etc. 
–  Note: Java and C# get this wrong.  They allows covariant array subtyping, 

but then compensate by adding a dynamic check on every array update! 
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Another Way to See It 
•  We can think of a reference cell as an immutable record (object) with 

two functions (methods) and some hidden state:���
     T ref   ≃   {get: unit -> T;   set: T -> unit} 
–  get returns the value hidden in the state. 
–  set updates the value hidden in the state. 

•  When is T ref <: S ref? 
•  Records are like tuples: subtyping extends pointwise over each 

component. 
•  {get: unit -> T; set: T -> unit} <: {get: unit -> S; set: S -> unit} 

–  get components are subtypes:     unit -> T  <:  unit -> S���
set components are subtypes:  T -> unit  <:  S -> unit 

•  From get, we must have T <: S (covariant return) 
•  From set, we must have S <: T (contravariant arg.) 
•  From T <: S and S <: T we conclude T = S. 
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STRUCTURAL VS. NOMINAL 
TYPES 
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Structural vs. Nominal Typing 
•  Is type equality / subsumption defined by the structure of the data or the 

name of the data? 
•  Example 1:  type abbreviations (OCaml) vs. “newtypes” (a la Haskell) 

 

•  Type abbreviations are treated “structurally”���
Newtypes are treated “by name” 
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(* OCaml: *)
type cents = int    (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer  (* Integer and Cents arr  
                                isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y                (* Ill typed! *)



Nominal Subtyping in Java 
•  In Java, Classes and Interfaces must be named and their relationships 

explicitly declared: 

•  Similarly for inheritance: programmers must declare the subclass 
relation via the “extends” keyword. 
–  Typechecker still checks that the classes are structurally compatible  
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(* Java: *)
interface Foo {
  int foo();
}

class C { /* Does not implement the Foo interface */
  int foo() {return 2;}
}

class D implements Foo {   
  int foo() {return 341;}
}


