
CIS 341: COMPILERS
Lecture 16

Announcements
•  Reminder: HW4 Compiling OAT v.1
•  DUE: Thursday, March 26th
•  START TODAY! (IF YOU HAVEN’T ALREADY)

Zdancewic CIS 341: Compilers 2

ENVIRONMENT-BASED
INTERPRETERS

Zdancewic CIS 341: Compilers 3

See fun.ml Eval2 and Eval3
dynamic scoping vs. static scoping

CLOSURE CONVERSION

Zdancewic CIS 341: Compilers 4

Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.���
���

Compiling First-class Functions

•  To implement first-class functions on a processor, there are two
problems:
–  First: we must implement substitution of free variables
–  Second: we must separate ‘code’ from ‘data’

•  Reify the substitution:
–  Move substitution from the meta language to the object language by

making the data structure & lookup operation explicit
–  The environment-based interpreter is one step in this direction

•  Closure Conversion:
–  Eliminates free variables by packaging up the needed environment in the

data structure.

•  Hoisting:
–  Separates code from data, pulling closed code to the top level.

Zdancewic CIS 341: Compilers 5

Example of closure creation
•  Recall the “add” function:���

let add = fun x -> fun y -> x + y

•  Consider the inner function: fun y -> x + y

•  When run the function application: add 4  
the program builds a closure and returns it.
–  The closure is a pair of the environment and a code pointer.

•  The code pointer takes a pair of parameters: env and y
–  The function code is (essentially):���

 fun (env, y) -> let x = nth env 0 in x + y

CIS 341: Compilers 6

ptr Code(env, y, body)

(4) code body

Representing Closures
•  As we saw, the simple closure conversion algorithm doesn’t generate

very efficient code.
–  It stores all the values for variables in the environment, ���

even if they aren’t needed by the function body.
–  It copies the environment values each time a nested closure is created.
–  It uses a linked-list datastructure for tuples.

•  There are many options:
–  Store only the values for free variables in the body of the closure.
–  Share subcomponents of the environment to avoid copying
–  Use vectors or arrays rather than linked structures

CIS 341: Compilers 7

Array-based Closures with N-ary Functions
(fun (x y z) ->

(fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z
n,m

p

nil x y z

nxt n m

nxt p +

Closure B

env code

Closure A

Closure B

env code

Closure A

app

1,0

Note how free
variables are
“addressed”
relative to the
closure due to
shared env.

“follow 1 nxt���
 ptr then look���
 up index 0”

“follow 2 nxt���
 ptrs then look���
 up index 2”

BACK TO TYPECHECKING

Zdancewic CIS 341: Compilers 9

���
���

Type Checking / Static Analysis
•  Recall the interpreter from the Eval3 module:
let rec eval env e =
 match e with
 | …
 | Add (e1, e2) ->

 (match (eval env e1, eval env e2) with
 | (IntV i1, IntV i2) -> IntV (i1 + i2)
 | _ -> failwith "tried to add non-integers")

 | …

•  The interpreter might fail at runtime.
–  Not all operations are defined for all values (e.g. 3/0, 3 + true, …)

•  A compiler can’t generate sensible code for this
case.
–  A naïve implementation might “add” an integer and a pointer

CIS 341: Compilers 10

Notes about this Typechecker
•  In the interpreter, we only evaluate the body of a function when it's

applied.
•  In the typechecker, we always check the body of the function (even if

it's never applied.)
–  Because of this, we must assume the input has some type (say t1) and

reflect this in the type of the function ���
(t1 -> t2).

•  Dually, at a call site (e1 e2), we don't know what closure we're going
to get.
–  But we can calculate e1's type, check that e2 is an argument of the right

type, and also determine what type e1 will return.

•  Question: Why is this an approximation?
•  Question: What if well_typed always returns false?

Type Judgments
•  In the judgment: E ⊢ e : t

–  E is a typing environment or a type context
–  E maps variables to types. It is just a set of bindings of the form: ���

x1 : t1, x2 : t2, …, xn : tn

•  For example: x : int, b : bool ⊢ if (b) 3 else x : int

•  What do we need to know to decide whether “if (b) 3 else x” has type
int in the environment x : int, b : bool?
–  b must be a bool i.e. x : int, b : bool ⊢ b : bool
–  3 must be an int i.e. x : int, b : bool ⊢ 3 : int
–  x must be an int i.e. x : int, b : bool ⊢ x : int

CIS 341: Compilers 12

Simply-typed Lambda Calculus
•  For the language in “tc.ml” we have five inference rules:

•  Note how these rules correspond to the code.

CIS 341: Compilers 13

E ⊢ i : int

E ⊢ e1 : int E ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T ∈ E

E ⊢ x : T

E, x : T ⊢ e : S

E ⊢ fun (x:T) -> e : T -> S

E ⊢ e1 : T -> S E ⊢ e2 : T

E ⊢ e1 e2 : S

INT VAR ADD

FUN APP

Type Checking Derivations
•  A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

•  Leaves of the tree are axioms (i.e. rules with no premises)
–  Example: the INT rule is an axiom

•  Goal of the typechecker: verify that such a tree exists.
•  Example: Find a tree for the following program using the inference

rules on the previous slide:
 ���

 ⊢ (fun (x:int) -> x + 3) 5 : int

CIS 341: Compilers 14

Example Derivation Tree

•  Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is
the same shape as this tree!

•  Note that x : int ∈ E is implemented by the function lookup

CIS 341: Compilers 15

⊢ (fun (x:int) -> x + 3) 5 : int

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int

x : int ⊢ x + 3 : int

x : int ⊢ x : int x : int ⊢ 3 : int

x : int ∈ x : int

APP

INT

INT VAR

ADD

FUN

Arrays
•  Array constructs are not hard either, here is one possibility
•  First: add a new type constructor: T[]

CIS 341: Compilers 16

E ⊢ e1 : int E ⊢ e2 : T

E ⊢ new T[e1](e2) : T[]

NEW
e1 is the size of the newly
allocated array. e2 is
initializes the elements of
the array.

E ⊢ e1 : T[] E ⊢ e2 : int

E ⊢ e1[e2] : T

INDEX

Note: These rules don’t
ensure that the array index
is in bounds – that should
be checked dynamically. E ⊢ e1 : T[] E ⊢ e2 : int E ⊢ e3 : T

E ⊢ e1[e2] = e3 ok

UPDATE

Tuples
•  ML-style tuples with statically known number of products:
•  First: add a new type constructor: T1 * … * Tn

CIS 341: Compilers 17

E ⊢ e1 : T1 … E ⊢ en : Tn

E ⊢ (e1, …, en) : T1 * … * Tn

TUPLE

E ⊢ e : T1 * … * Tn 1 ≤ i ≤ n

E ⊢ #i e : Ti

PROJ

References
•  ML-style references (note that ML uses only expressions)
•  First, add a new type constructor: T ref

CIS 341: Compilers 18

E ⊢ e : T

E ⊢ ref e : T ref

REF

E ⊢ e : T ref

E ⊢ !e : T

DEREF

Note the similarity with the
rules for arrays… E ⊢ e1 : T ref E ⊢ e2 : T

E ⊢ e1 := e2 : unit

ASSIGN

Recursive Definitions
•  Consider the ML factorial function:

let rec fact (x:int) : int =
 if (x == 0) 1 else x * fact(x-1)

•  Note that the function name fact appears inside the body of fact’s
definition!

•  To typecheck the body of fact, we must assume that the type of fact is
already known.

•  In general: Collect the names and types of all mutually recursive
definitions, add them all to the context E before checking any of the
definition bodies.

•  Often useful to separate the “global context” from the “local context”

 CIS 341: Compilers 19

E, fact : int -> int, x : int ⊢ ebody : int

E ⊢ int fact(int x) (ebody) : int -> int

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers 20

���
Beyond describing “structure”… describing “properties”
Types as sets
Subsumption���

What are types, anyway?
•  A type is just a predicate on the set of values in a system.

–  For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

–  Equivalently, we can think of a type as just a subset of all values.

•  For efficiency and tractability, the predicates are usually taken to be
very simple.
–  Types are an abstraction mechanism

•  We can easily add new types that distinguish different subsets of
values:

type tp =
 | IntT (* type of integers *)
 | PosT | NegT | ZeroT (* refinements of ints *)
 | BoolT (* type of booleans *)
 | TrueT | FalseT (* subsets of booleans *)
 | AnyT (* any value *)

CIS 341: Compilers 21

Modifying the typing rules
•  We need to refine the typing rules too…
•  Some easy cases:

–  Just split up the integers into their more refined cases:

•  Same for booleans:

CIS 341: Compilers 22

i > 0

E ⊢ i : Pos

P-INT

i < 0

E ⊢ i : Neg

N-INT ZERO

E ⊢ 0 : Zero

TRUE

E ⊢ true : True

FALSE

E ⊢ false : False

What about “if”?
•  Two cases are easy:

•  What happens when we don’t know statically which branch will be
taken?

•  Consider the typechecking problem:���

 x:bool ⊢ if (x) 3 else -1 : ?

•  The true branch has type Pos and the false branch has type Neg.

–  What should be the result type of the whole if?

CIS 341: Compilers 23

E ⊢ e1 : True E ⊢ e2 : T

E ⊢ if (e1) e2 else e3 : T

E ⊢ e1 : False E ⊢ e3 : T

E ⊢ if (e1) e2 else e3 : T

IF-T IF-F

Subtyping and Upper Bounds
•  If we think of types as sets of values, we have a natural inclusion

relation: Pos ⊆ Int
•  This subset relation gives rise to a subtype relation: Pos <: Int
•  Such inclusions give rise to a subtyping hierarchy:

•  Given any two types T1 and T2, we can calculate their least upper
bound (LUB) according to the hierarchy.
–  Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
–  Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on
types.

CIS 341: Compilers 24

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

“If” Typing Rule Revisited
•  For statically unknown conditionals, we want the return value to be

the LUB of the types of the branches:

•  Note that LUB(T1, T2) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T1 or
type T2.

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁ T2
•  LUB is also called the join operation.

CIS 341: Compilers 25

E ⊢ e1 : bool E ⊢ e2 : T1 E ⊢ e3 : T2

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Subtyping Hierarchy
•  A subtyping hierarchy:

•  The subtyping relation is a partial order:
–  Reflexive: T <: T for any type T
–  Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3

–  Antisymmetric: It T1 <: T2 and T2 <: T1 then T1 = T2

CIS 341: Compilers 26

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

Soundness of Subtyping Relations
•  We don’t have to treat every subset of the integers as a type.

–  e.g., we left out the type NonNeg

•  A subtyping relation T1 <: T2 is sound if it approximates the underlying
semantic subset relation.

•  Formally: write ⟦T⟧ for the subset of (closed) values of type T
–  i.e. ⟦T⟧ = {v | ⊢ v : T}
–  e.g. ⟦Zero⟧ = {0}, ⟦Pos⟧ = {1, 2, 3, …}

•  If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound.
–  e.g. Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...}
–  e.g. Int <: Pos is not sound, since it is not the case that

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…}

CIS 341: Compilers 27

Soundness of LUBs
•  Whenever you have a sound subtyping relation, it follows that:

 ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧
–  Note that the LUB is an over approximation of the “semantic union”
–  Example: ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇
 {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧

•  Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

•  It just so happens that LUBs on types <: Int correspond to +

CIS 341: Compilers 28

E ⊢ e1 : T1 E ⊢ e2 : T2 T1 <: Int T2 <: Int

E ⊢ e1 + e2 : T1 ⋁ T2

ADD

Subsumption Rule
•  When we add subtyping judgments of the form T <: S we can

uniformly integrate it into the type system generically:

•  Subsumption allows any value of type T to be treated as an S
whenever T <: S.

•  Adding this rule makes the search for typing derivations more difficult
– this rule can be applied anywhere, since T <: T.
–  But careful engineering of the typing system can incorporate the

subsumption rule into a deterministic algorithm.

CIS 341: Compilers 29

E ⊢ e : T T <: S

E ⊢ e : S

SUBSUMPTION

Downcasting
•  What happens if we have an Int but need something of type Pos?

–  At compile time, we don’t know whether the Int is greater than zero.
–  At run time, we do.

•  Add a “checked downcast”

•  At runtime, ifPos checks whether e1 is > 0. If so, branches to e2 and
otherwise branches to e3.

•  Inside the expression e2, x is the name for e1’s value, which is known
to be strictly positive because of the dynamic check.

•  Note that such rules force the programmer to add the appropriate
checks
–  We could give integer division the type: Int -> NonZero -> Int

CIS 341: Compilers 30

E ⊢ e1 : Int E, x : Pos ⊢ e2 : T2 E ⊢ e3 : T3
���

E ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers 31

���

Extending Subtyping to Other Types
•  What about subtyping for tuples?

–  Intuition: whenever a program expects���
something of type S1 * S2, it is sound ���
to give it a T1 * T2.

–  Example: (Pos * Neg) <: (Int * Int)

•  What about functions?

•  When is T1 -> T2 <: S1 -> S2 ?

CIS 341: Compilers 32

T1 <: S1 T2 <: S2

(T1 * T2) <: (S1 * S2)

Subtyping for Function Types
•  One way to see it:

•  Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

CIS 341: Compilers 33

Expected function

Actual function S1 S2 T1 T2

S1 <: T1 T2 <: S2

(T1 -> T2) <: (S1 -> S2)

Immutable Records
•  Record type: {lab1:T1; lab2:T2; … ; labn:Tn}

–  Each labi is a label drawn from a set of identifiers.

CIS 341: Compilers 34

E ⊢ e1 : T1 E ⊢ e2 : T2 … E ⊢ en : Tn

E ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

E ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

E ⊢ e.labi : Ti

PROJECTION

Immutable Record Subtyping
•  Depth subtyping:

–  Corresponding fields may be subtypes

•  Width subtyping:
–  Subtype record may have more fields:

CIS 341: Compilers 35

T1 <: U1 T2 <: U2 … Tn <: Un

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}

DEPTH

m ≤ n

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}

WIDTH

Immutable Record Subtyping (cont’d)
•  Width subtyping assumes an implementation in which order of fields

in a record matters:���
 {x:int; y:int} ≠ {y:int; x:int}

•  But: {x:int; y:int; z:int} <: {x:int; y:int}
–  Implementation: a record is a struct, subtypes just add fields at the end of

the struct.

•  Alternative: allow permutation of record fields:���
 {x:int; y:int} = {y:int; x:int}
–  Implementation: compiler sorts the fields before code generation.
–  Need to know all of the fields to generate the code

•  Permutation is not directly compatible with width subtyping:
 {x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

CIS 341: Compilers 36

If you want both:
•  If you want permutability & dropping, you need to either copy (to

rearrange the fields) or use a dictionary like this:

p = {x=42; y=55; z=66}:{x:int; y:int; z:int}

q : {y:int; z:int} = p

x y z

42 55 66

y z

dictionary

dictionary

Subtyping and References
•  What is the proper subtyping relationship for references and arrays?

•  Suppose we have NonZero as a type and the division operation has
type: Int -> NonZero -> Int
–  Recall that NonZero <: Int

•  Should (NonZero ref) <: (Int ref) ?
•  Consider this program:

Int bad(NonZero ref r) {
 Int ref a = r; (* OK because (NonZero ref <: Int ref*)
 a := 0; (* OK because 0 : Zero <: Int *)
 return (42 / !r) (* OK because !r has type NonZero *)
}

CIS 341: Compilers 38

Mutable Structures are Invariant
•  Covariant reference types are unsound

–  As demonstrated in the previous example

•  Contravariant reference types are also unsound
–  i.e. If T1 <: T2 then ref T2 <: ref T1 is also unsound
–  Exercise: construct a program that breaks contravariant references.

•  Moral: Mutable structures are invariant: ���
 T1 ref <: T2 ref implies T1 = T2

•  Same holds for arrays, OCaml-style mutable records, object fields, etc.
–  Note: Java and C# get this wrong. They allows covariant array subtyping,

but then compensate by adding a dynamic check on every array update!

CIS 341: Compilers 39

Another Way to See It
•  We can think of a reference cell as an immutable record (object) with

two functions (methods) and some hidden state:���
 T ref ≃ {get: unit -> T; set: T -> unit}
–  get returns the value hidden in the state.
–  set updates the value hidden in the state.

•  When is T ref <: S ref?
•  Records are like tuples: subtyping extends pointwise over each

component.
•  {get: unit -> T; set: T -> unit} <: {get: unit -> S; set: S -> unit}

–  get components are subtypes: unit -> T <: unit -> S���
set components are subtypes: T -> unit <: S -> unit

•  From get, we must have T <: S (covariant return)
•  From set, we must have S <: T (contravariant arg.)
•  From T <: S and S <: T we conclude T = S.

CIS 341: Compilers 40

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers 41

���

Structural vs. Nominal Typing
•  Is type equality / subsumption defined by the structure of the data or the

name of the data?
•  Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

•  Type abbreviations are treated “structurally”���
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers 42

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents arr  
 isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)

Nominal Subtyping in Java
•  In Java, Classes and Interfaces must be named and their relationships

explicitly declared:

•  Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
–  Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers 43

(* Java: *)
interface Foo {
 int foo();
}

class C { /* Does not implement the Foo interface */
 int foo() {return 2;}
}

class D implements Foo {
 int foo() {return 341;}
}

