Lecture 16

CIS 341: COMPILERS

Announcements

* Reminder: HW4 Compiling OAT v.1
« DUE: Thursday, March 26
 START TODAY! (IF YOU HAVEN’T ALREADY)

Zdancewic CIS 341: Compilers

See fun.ml Eval2 and Eval3
dynamic scoping vs. static scoping

ENVIRONMENT-BASED
INTERPRETERS

Zdancewic CIS 341: Compilers

Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.

CLOSURE CONVERSION

Zdancewic CIS 341: Compilers

Zdancewic CIS 341: Compilers

Compiling First-class Functions

To implement first-class functions on a processor, there are two
problems:

— First: we must implement substitution of free variables
— Second: we must separate ‘code’ from ‘data’

Reify the substitution:

— Move substitution from the meta language to the object language by
making the data structure & lookup operation explicit

— The environment-based interpreter is one step in this direction
Closure Conversion:

— Eliminates free variables by packaging up the needed environment in the
data structure.

Hoisting:
— Separates code from data, pulling closed code to the top level.

U1

Example of closure creation

e Recall the “add” function:
let add = fun x ->

funy -> x + vy

« Consider the inner function: fun y -> x + y

* When run the function application: add 4
the program builds a closure and returns it.
— The closure is a pair of the environment and a code pointer.

ptr ™~

Code(env, y, body) -

S

\

« The code pointer takes a pair of parameters: env and y

— The function code is (essentially):
fun (env, y) -> let x = nth env 0 in

CIS 341: Compilers

X t+y

Representing Closures

* As we saw, the simple closure conversion algorithm doesn’t generate
very efficient code.

— It stores all the values for variables in the environment,
even if they aren’t needed by the function body.

— It copies the environment values each time a nested closure is created.
— It uses a linked-list datastructure for tuples.

* There are many options:
— Store only the values for free variables in the body of the closure.

— Share subcomponents of the environment to avoid copying
— Use vectors or arrays rather than linked structures

CIS 341: Compilers

Array-based Closures with N-ary Functions

(fun (xy z) ->
(fun (n m) -> 6fun p -> «fun q ->n + z) X)

T

|
Closure A Closure B
X,Y,Z Note how free

n,m p variables are
“addressed”
relative to the
closure due to
shared env.

Closure A L nxt n m @

up index 0”

“follow 1 nxt
\y ‘\ ptr then IOOk
xt
Closure B
<d.e/

“follow 2 nxt
ptrs then look
up index 2”

BACK TO TYPECHECKING

Zdancewic CIS 341: Compilers

Type Checking / Static Analysis

 Recall the interpreter from the Eval3 module:

let rec eval env e =
match e with

|
Add (el, e2) ->
|
(match (eval env el, eval env e2) with
| (Intv il, IntVv i2) -> IntV (il + 1i2)
| -> failwith "tried to add non-integers")

.
 The interpreter might fail at runtime.

— Not all operations are defined for all values (e.g. 3/0, 3 + true, ...)

« A compiler can’t generate sensible code for this
case.

— A naive implementation might “add” an integer and a pointer

CIS 341: Compilers

10

Notes about this Typechecker

In the interpreter, we only evaluate the body of a function when it's
applied.

In the typechecker, we always check the body of the function (even if
it's never applied.)

— Because of this, we must assume the input has some type (say t;) and
reflect this in the type of the function

(t1 -> tz).
Dually, at a call site (e, e,), we don't know what closure we're going
to get.

— But we can calculate e,'s type, check that e, is an argument of the right
type, and also determine what type e, will return.

Question: Why is this an approximation?
Question: What if well typed always returns false?

Type Judgments

In the judgment: Ere:t
— Ei1s a typing environment or a type context
— E maps variables to types. It is just a set of bindings of the form:

Xp ot X0, o, X it

For example: x :int, b : bool - if (b) 3 else x : int

What do we need to know to decide whether “if (b) 3 else x” has type

int in the environment x : int, b : bool?
X :int, b : bool F b : bool

— b must be a bool i.e.
— 3 must be an int i.e. X :int, b : bool 3 :int
— X must be an int i.e. X :int, b : bool F x : int

CIS 341: Compilers

12

Simply-typed Lambda Calculus

* For the language in “tc.ml” we have five inference rules:

INT VAR ADD
x: T € E Ere,:int Ere,:int
EFi:int Frx:T E-e +e,:int
FUN APP
E,x:Tre:S EFe, :T->S Ere,:T
E+fun (xT)->e : T->S EFre e, :S

« Note how these rules correspond to the code.

CIS 341: Compilers

13

Type Checking Derivations

A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

 Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

* Goal of the typechecker: verify that such a tree exists.

« Example: Find a tree for the following program using the inference
rules on the previous slide:

= (fun (x:int) -=> x + 3) 5 :int

CIS 341: Compilers 14

Example Derivation Tree

int € x:int

X
VAR INT
X:intFx :int X:intF3 :int
ADD
X:intEXx+ 3 :int
FUN INT

= (fun (x:int) -=> x + 3) : int -> int =5 :int

APP : :
= (fun (x:int) -=>x +3)5 :int

Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is

the same shape as this tree!
Note that x : int € E is implemented by the function 1lookup

15

CIS 341: Compilers

Arrays

 Array constructs are not hard either, here is one possibility
* First: add a new type constructor: T][]

NEW F + e, :int F - e, T e, is the size of the.newly
allocated array. e, is
initializes the elements of

E - new T[e1](ez) : T1] the array.
NDEX] Ere,:TIl Ere,:int
E+ €, [e2] T Note: These rules don’t

UPDATE ensure that the array index

is in bounds — that should

E - e, T[] EF e, : int E+ €, T be checked dynamically.

Et+ e le,] =e; 0k

CIS 341: Compilers 16

Tuples

* ML-style tuples with statically known number of products:

 First: add a new type constructor: T, * ... *T_

WLl Evre :T, ... Ere,:T

EF (e, ..., €

PROJ

CIS 341: Compilers

17

References

* ML-style references (note that ML uses only expressions)

* First, add a new type constructor: T ref

REF

DEREF

ASSIGN

ErFe:T

Frrefe:Tref

Fre:Tref

E-le : T

Fre :Tref Etre,:T

CIS 341: Compilers

EFe, :=e, :unit

Note the similarity with the
rules for arrays...

18

Recursive Definitions

Consider the ML factorial function:
let rec fact (x:int) : int =
if (x == 0) 1 else x * fact(x-1)

Note that the function name fact appears inside the body of fact’s
definition!
To typecheck the body of fact, we must assume that the type of fact is
already known.

E, fact : int -> int, x 1 int F ey, @ int

E = int fact(int x) (ebody) - int -> int

In general: Collect the names and types of all mutually recursive
definitions, add them all to the context E before checking any of the
definition bodies.

Often useful to separate the “global context” from the “local context”

CIS 341: Compilers 19

Beyond describing “structure”... describing “properties”
Types as sets
Subsumption

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers

20

What are types, anyway?

* A type is just a predicate on the set of values in a system.

— For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

— Equivalently, we can think of a type as just a subset of all values.

 For efficiency and tractability, the predicates are usually taken to be

very simple.

— Types are an abstraction mechanism

* We can easily add new types that distinguish different subsets of

values:
type tp =
IntT
PosT | NegT | ZeroT
BoolT
TrueT | FalseT
AnyT

CIS 341: Compilers

(*
(*
(*
(*
(*

type of integers ¥*)
refinements of ints
type of booleans *)
subsets of booleans
any value *)

*)

*)

21

Modifying the typing rules

« We need to refine the typing rules too...

* Some easy cases:
— Just split up the integers into their more refined cases:

P-INT

1 >0

N-INT

E+1:Pos

e Same for booleans:

CIS 341: Compilers

TRUE

1 <O

/ZERO

EFi:Neg

E - true : True

FALSE

E-O: Zero

F + false : False

22

What about “if”’?

* Two cases are easy:

IF-T| Ere,:True Ere,:T UM Ere :False Ere,:T

E-if(e;)e,elsee; : T Erif(e;)e,elsee; : T

* What happens when we don’t know statically which branch will be
taken?

 Consider the typechecking problem:

x:bool +if (x) 3 else -1 : ?

* The true branch has type Pos and the false branch has type Neg.
— What should be the result type of the whole if?

CIS 341: Compilers 23

Subtyping and Upper Bounds

If we think of types as sets of values, we have a natural inclusion
relation: Pos € Int

This subset relation gives rise to a subtype relation: Pos <: Int
Such inclusions give rise to a subtyping hierarchy:
~Any N
Int Bool
SN 7

Neg Zero Pos True False

Given any two types T, and T,, we can calculate their /east upper
bound (LUB) according to the hierarchy.

— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any

— Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on

types.

CIS 341: Compilers

“If” Typing Rule Revisited

* For statically unknown conditionals, we want the return value to be
the LUB of the types of the branches:

IF-BOOL

E-e :bool Ere,:T, Ere;:T,

E+if (e;) e, else e; : LUB(T,,T,)

« Note that LUB(T,, T,) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T, or

type T,.
 In math notation, LUB(T1, T2) is sometimes written T, V T,
« LUB is also called the join operation.

CIS 341: Compilers 25

Subtyping Hierarchy

* A subtyping hierarchy:

~Any N
=
Int Bool
SN

Neg Zero Pos True False

 The subtyping relation is a partial order:
— Reflexive: T<:T foranytypeT
— Transitive: T,<:T, andT,<:TythenT, <: T,
— Antisymmetric: ItT, <:T,and T, <:T, thenT, =T,

CIS 341: Compilers

26

Soundness of Subtyping Relations

« We don’t have to treat every subset of the integers as a type.
— e.g., we left out the type NonNeg

« A subtyping relation T, <: T, is sound if it approximates the underlying
semantic subset relation.
« Formally: write [T] for the subset of (closed) values of type T
— ie [Tl={v|Fv:T}
— e.g. [Zero] ={0}, [Pos] ={1, 2,3, ...}

« IfT, <:T, implies [T,] € [T,], thenT, <: T, is sound.
— e.g. Pos <:Intis sound, since {1,2,3,...} € {...,-3,-2,-1,0,1,2,3,...}

— e.g. Int <: Pos is not sound, since it is not the case that
{...,-3,-2,-1,0,1,2,3,...}& {1,2,3,...}

CIS 341: Compilers 27

Soundness of LUBs

* Whenever you have a sound subtyping relation, it follows that:
[LUB(T,, T,))I 2 [T,1 U [T,]
— Note that the LUB is an over approximation of the “semantic union”
— Example: [LUB(Zero, Pos)] =[Int] ={...,-3,-2,-1,0,1,2,3,...} 2
{0,1,2,3,...} ={0} U {1,2,3,...} = [Zero] U [Pos]

« Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

* It just so happens that LUBs on types <: Int correspond to +

ADD

ErFe,: T, EFe,: T, Ty<tInt T, <:Int

Ere +e,:T,VT,

CIS 341: Compilers 28

Subsumption Rule

* When we add subtyping judgments of the form T <: S we can
uniformly integrate it into the type system generically:

SUBSUMPTION Ere:T T<S

E-e:S

« Subsumption allows any value of type T to be treated as an S
whenever T <: S.

 Adding this rule makes the search for typing derivations more difficult

— this rule can be applied anywhere, since T <: T.

— But careful engineering of the typing system can incorporate the
subsumption rule into a deterministic algorithm.

CIS 341: Compilers

29

Downcasting

What happens if we have an Int but need something of type Pos?
— At compile time, we don’t know whether the Int is greater than zero.
— At run time, we do.

Add a “checked downcast”
ErFe,:Int E x:Poste,:T, EFe;: T,

E+ifPos (x =e;) e, elsee; : T, VT,

At runtime, ifPos checks whether e, is > 0. If so, branches to e, and
otherwise branches to e;.

Inside the expression e,, x is the name for e,’s value, which is known
to be strictly positive because of the dynamic check.

Note that such rules force the programmer to add the appropriate
checks

— We could give integer division the type: Int-> NonZero -> Int

CIS 341: Compilers 30

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers

Extending Subtyping to Other Types

» What about subtyping for tuples?

— Intuition: whenever a program expects

something of type S, * S,, it is sound T, <S5, T,<:5,
togiveitaT, *T,.
— Example: (Pos * Neg) <: (Int * Int) (T1 * TZ) < (51 % Sz)

 What about functions?

* Whenis T,>T, <t S;,->S, ?

CIS 341: Compilers 32

Subtyping for Function Types

* One way to see it

Expected function

> > > >

* Need to convertan ST to aT1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

S, <:T, T,<:5,

(T, >T,) < (5, ->5,)

CIS 341: Compilers 33

e Recordt

Immutable Records

ype: {lab,:T,; lab,:T,; ..

. lab: T}

— Each lab; is a label drawn from a set of identifiers.

RECORD

Ere, T, Ere,:T,

E-e : T

n

n

E - {lab, = e;; lab, = e,; ..

PROJECTION

E+e:{lab,:T;; [ab,:T,; ..

CIS 341: Compilers

.5 lab ;T }

Ere.lab, : T

., lab, =e.} : {lab,:T,; lab,:T,; ..

. lab T}

34

Immutable Record Subtyping

* Depth subtyping:
— Corresponding fields may be subtypes

PPN 1. <U, T,<U, ... T.<U

n n

{lab;:T;; lab,:T,; ... ; lab:T } <: {lab;:U;; lab,:U,; ... ; lab:U_}

* Width subtyping:

— Subtype record may have more fields:

WIDTH

m=<n

{lab;:T;; lab,:T,; ... ; lab:T } <: {lab;:T;; lab,:T,; ... ; lab,:T }

CIS 341: Compilers 35

Immutable Record Subtyping (cont’d)

* Width subtyping assumes an implementation in which order of fields
in a record matters:

{x:int; y:int} # {y:int; x:int}
 But: {x:int y:int; z:int} <: {x:int; y:int}
— Implementation: a record is a struct, subtypes just add fields at the end of
the struct.

 Alternative: allow permutation of record fields:
{x:nt; y:int} = {y:int; x:int}
— Implementation: compiler sorts the fields before code generation.
— Need to know all of the fields to generate the code
« Permutation is not directly compatible with width subtyping:

{x:int; z:int; y:int} = {x:int; y:int; z:int} </t {y:int; z:int}

CIS 341: Compilers 36

If you want both:

* If you want permutability & dropping, you need to either copy (to
rearrange the fields) or use a dictionary like this:

dictionary

L
||

T e—— q:{y:int; zzint} = p

dictionary

e P = {x=42; y=55; z=66}.{x:int; y:int; z:int}

®) |

Subtyping and References

« What is the proper subtyping relationship for references and arrays?

« Suppose we have NonZero as a type and the division operation has
type: Int-> NonZero -> Int

— Recall that NonZero <: Int
 Should (NonZero ref) <: (Intref) ?
 Consider this program:

Int bad(NonZero ref r) {
Int ref a = r; (* OK because (NonZero ref <: Int ref*)
a := 0; (* OK because 0 : Zero <: Int ¥*)
return (42 / !r) (* OK because !r has type NonZero *)

CIS 341: Compilers 38

Mutable Structures are Invariant

Covariant reference types are unsound
— As demonstrated in the previous example

Contravariant reference types are also unsound
— ie. IfT, <:T, thenref T, <: ref T, is also unsound

— Exercise: construct a program that breaks contravariant references.

Moral: Mutable structures are invariant:
T,ref <:T,ref implies T, =T,

Same holds for arrays, OCaml-style mutable records, object fields, etc.

— Note: Java and C# get this wrong. They allows covariant array subtyping,
but then compensate by adding a dynamic check on every array update!

CIS 341: Compilers 39

CIS 341: Compilers

Another Way to See It

We can think of a reference cell as an immutable record (object) with
two functions (methods) and some hidden state:
Tref = {get:unit->T, set: T -> unit}
— get returns the value hidden in the state.
— set updates the value hidden in the state.

When is T ref <: S ref?

Records are like tuples: subtyping extends pointwise over each
component.

{get: unit ->T; set: T -> unit} <: {get: unit -> §; set: S -> unit}

— get components are subtypes: unit->T <: unit->S
set components are subtypes: T ->unit < S->unit

From get, we must have T <: S (covariant return)
From set, we must have S <: T (contravariant arg.)
FromT <: Sand S <: T we conclude T = S.

40

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers

Structural vs. Nominal Typing

s type equality / subsumption defined by the structure of the data or the
name of the data?

Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + vy

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents arr

isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo xy =x +y (* I11l typed! *)

Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers

Nominal Subtyping in Java

 InJava, Classes and Interfaces must be named and their relationships
explicitly declared:
(* Java: *)

interface Foo {
int foo();

}

class C { /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 341;}

}

 Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
— Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers

43

