Lecture 17

CIS 341: COMPILERS

Announcements

* Reminder: HW4 Compiling OAT v.1
« DUE: Thursday, March 26
 IFYOU HAVEN’T STARTED, YOU ARE DOOMED

Zdancewic CIS 341: Compilers

What are types, anyway?

* A type is just a predicate on the set of values in a system.

— For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

— Equivalently, we can think of a type as just a subset of all values.

 For efficiency and tractability, the predicates are usually taken to be

very simple.

— Types are an abstraction mechanism

* We can easily add new types that distinguish different subsets of

values:
type tp =
IntT
PosT | NegT | ZeroT
BoolT
TrueT | FalseT
AnyT

CIS 341: Compilers

(*
(*
(*
(*
(*

type of integers ¥*)
refinements of ints
type of booleans *)
subsets of booleans
any value *)

*)

*)

Subtyping and Upper Bounds

If we think of types as sets of values, we have a natural inclusion
relation: Pos € Int

This subset relation gives rise to a subtype relation: Pos <: Int
Such inclusions give rise to a subtyping hierarchy:
~Any N
Int Bool
SN 7

Neg Zero Pos True False

Given any two types T, and T,, we can calculate their /east upper
bound (LUB) according to the hierarchy.

— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any

— Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on

types.

CIS 341: Compilers

“If” Typing Rule Revisited

* For statically unknown conditionals, we want the return value to be
the LUB of the types of the branches:

IF-BOOL

E-e :bool Ere,:T, Ere;:T,

E+if (e;) e, else e; : LUB(T,,T,)

« Note that LUB(T,, T,) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T, or

type T,.
 In math notation, LUB(T1, T2) is sometimes written T, V T,
« LUB is also called the join operation.

CIS 341: Compilers

Subtyping Hierarchy
* A subtyping hierarchy:

~Any N
=
Int Bool
SN

Neg Zero Pos True False

 The subtyping relation is a partial order:
— Reflexive: T<:T foranytypeT
— Transitive: T,<:T, andT,<:TythenT, <: T,
— Antisymmetric: ItT, <:T,and T, <:T, thenT, =T,

CIS 341: Compilers

Soundness of Subtyping Relations

« We don’t have to treat every subset of the integers as a type.
— e.g., we left out the type NonNeg

« A subtyping relation T, <: T, is sound if it approximates the underlying
semantic subset relation.
« Formally: write [T] for the subset of (closed) values of type T
— ie [Tl={v|Fv:T}
— e.g. [Zero] ={0}, [Pos] ={1, 2,3, ...}

« IfT, <:T, implies [T,] € [T,], thenT, <: T, is sound.
— e.g. Pos <:Intis sound, since {1,2,3,...} € {...,-3,-2,-1,0,1,2,3,...}

— e.g. Int <: Pos is not sound, since it is not the case that
{...,-3,-2,-1,0,1,2,3,...}& {1,2,3,...}

CIS 341: Compilers 7

Soundness of LUBs

* Whenever you have a sound subtyping relation, it follows that:
[LUB(T,, T,))I 2 [T,1 U [T,]
— Note that the LUB is an over approximation of the “semantic union”
— Example: [LUB(Zero, Pos)] =[Int] ={...,-3,-2,-1,0,1,2,3,...} 2
{0,1,2,3,...} ={0} U {1,2,3,...} = [Zero] U [Pos]

« Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

* It just so happens that LUBs on types <: Int correspond to +

ADD

ErFe,: T, EFe,: T, Ty<tInt T, <:Int

Ere +e,:T,VT,

CIS 341: Compilers

Subsumption Rule

* When we add subtyping judgments of the form T <: S we can
uniformly integrate it into the type system:

SUBSUMPTION Ere:T T<S

E-e:S

« Subsumption allows any value of type T to be treated as an S
whenever T <: S.
« Adding this rule makes the search for typing derivations more difficult
— This rule can be applied anywhere, since T <: T.

— But... careful engineering of the typing system can incorporate the
subsumption rule into a deterministic algorithm.

— Basic Idea: Use subsumption only where absolutely necessary
* When checking an argument expression against a function type
* When checking an expression against a declaration type

CIS 341: Compilers

Checked Downcasting

What happens if we have an Int but need something of type Pos?
— At compile time, we don’t know whether the Int is greater than zero.
— At run time, we can find out.

Add a “checked downcast”
ErFe,:Int E x:Poste,:T, EFe;: T,

E+if¢ (Posx=¢e)e,elsee; : T, VT,

At runtime, ifPos checks whether e, is > 0. If so, branches to e, and
otherwise branches to e;.

Inside the expression e,, x is the name for e,’s value, which is known
to be strictly positive because of the dynamic check.

Note that such rules force the programmer to add the appropriate
checks

— We could give integer division the type: Int-> NonZero -> Int

CIS 341: Compilers 10

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers

Extending Subtyping to Other Types

» What about subtyping for tuples?

— Intuition: whenever a program expects

something of type S, * S,, it is sound T, <S5, T,<:5,
togiveitaT, *T,.
— Example: (Pos * Neg) <: (Int * Int) (T1 * TZ) < (51 % Sz)

 What about functions?

* Whenis T,>T, <t S;,->S, ?

CIS 341: Compilers 12

Subtyping for Function Types

* One way to see it

Expected function

> > > >

* Need to convertan ST to aT1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

S, <:T, T,<:5,

(T, >T,) < (5, ->5,)

CIS 341: Compilers 13

e Recordt

Immutable Records

ype: {lab,:T,; lab,:T,; ..

. lab: T}

— Each lab; is a label drawn from a set of identifiers.

RECORD

Ere, T, Ere,:T,

E-e : T

n

n

E - {lab, = e;; lab, = e,; ..

PROJECTION

E+e:{lab,:T;; [ab,:T,; ..

CIS 341: Compilers

.5 lab ;T }

Ere.lab, : T

., lab, =e.} : {lab,:T,; lab,:T,; ..

. lab T}

14

Immutable Record Subtyping

* Depth subtyping:
— Corresponding fields may be subtypes

PPN 1. <U, T,<U, ... T.<U

n n

{lab;:T;; lab,:T,; ... ; lab:T } <: {lab;:U;; lab,:U,; ... ; lab:U_}

* Width subtyping:

— Subtype record may have more fields:

WIDTH

m=<n

{lab;:T;; lab,:T,; ... ; lab:T } <: {lab;:T;; lab,:T,; ... ; lab,:T }

CIS 341: Compilers 15

Immutable Record Subtyping (cont’d)

* Width subtyping assumes an implementation in which order of fields
in a record matters:

{x:int; y:int} # {y:int; x:int}
 But: {x:int y:int; z:int} <: {x:int; y:int}
— Implementation: a record is a struct, subtypes just add fields at the end of
the struct.

 Alternative: allow permutation of record fields:
{x:nt; y:int} = {y:int; x:int}
— Implementation: compiler sorts the fields before code generation.
— Need to know all of the fields to generate the code
« Permutation is not directly compatible with width subtyping:

{x:int; z:int; y:int} = {x:int; y:int; z:int} </t {y:int; z:int}

CIS 341: Compilers 16

If you want both:

* If you want permutability & dropping, you need to either copy (to
rearrange the fields) or use a dictionary like this:

dictionary

L
||

T e—— q:{y:int; zzint} = p

dictionary

e P = {x=42; y=55; z=66}.{x:int; y:int; z:int}

®) |

Subtyping and References

« What is the proper subtyping relationship for references and arrays?

« Suppose we have NonZero as a type and the division operation has
type: Int-> NonZero -> Int

— Recall that NonZero <: Int
 Should (NonZero ref) <: (Intref) ?
 Consider this program:

Int bad(NonZero ref r) {
Int ref a = r; (* OK because (NonZero ref <: Int ref*)
a := 0; (* OK because 0 : Zero <: Int ¥*)
return (42 / !r) (* OK because !r has type NonZero *)

CIS 341: Compilers 18

Mutable Structures are Invariant

Covariant reference types are unsound
— As demonstrated in the previous example

Contravariant reference types are also unsound
— ie. IfT, <:T, thenref T, <: ref T, is also unsound

— Exercise: construct a program that breaks contravariant references.

Moral: Mutable structures are invariant:
T,ref <:T,ref implies T, =T,

Same holds for arrays, OCaml-style mutable records, object fields, etc.

— Note: Java and C# get this wrong. They allows covariant array subtyping,
but then compensate by adding a dynamic check on every array update!

CIS 341: Compilers 19

CIS 341: Compilers

Another Way to See It

We can think of a reference cell as an immutable record (object) with
two functions (methods) and some hidden state:
Tref = {get:unit->T, set: T -> unit}
— get returns the value hidden in the state.
— set updates the value hidden in the state.

When is T ref <: S ref?

Records are like tuples: subtyping extends pointwise over each
component.

{get: unit ->T; set: T -> unit} <: {get: unit -> §; set: S -> unit}

— get components are subtypes: unit->T <: unit->S
set components are subtypes: T ->unit < S->unit

From get, we must have T <: S (covariant return)
From set, we must have S <: T (contravariant arg.)
FromT <: Sand S <: T we conclude T = S.

20

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers

Structural vs. Nominal Typing

s type equality / subsumption defined by the structure of the data or the
name of the data?

Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + vy

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents are

isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo xy =x +y (* I11l typed! *)

Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers

Nominal Subtyping in Java

 InJava, Classes and Interfaces must be named and their relationships
explicitly declared:
(* Java: *)

interface Foo {
int foo();

}

class C { /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 341;}

}

 Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
— Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers

23

MODULARITY & ABSTRACTION

Zdancewic CIS 341: Compilers

Modular Programming

« Programs are typically composed of many modules.
— Separate compilation — scalable to millions of lines
— Code reuse — libraries, sharing
— Namespace management
— Encapsulation — hiding complexity
— Abstraction & abstract data-types

— Security

* What is a module?
— A collection of named, related values and types
— Definitions (partially) hidden from the outside

« Examples: Java classes & packages, C++ classes, Modula-3 modules,
SML/Ocaml structures & functors, CLU clusters, C source files, ...

CIS 341: Compilers

Separate Compilation

« Program is made of several compilation units
— Independent inputs to the compiler

 Avoids needing to recompile the whole program for every change
« Code is more reusable (libraries)

« Examples:
— C: .cfiles / Java: .java files / OCaml: .ml files

 For building a whole program out of compilation units:
* Need to know how to reference values in other units
— Solution: namespaces + linking

* Need to know datatype sizes (for code generation) or types (for type
safety)
— Solution: interfaces (C: .h files / Java: .class files / OCaml: .mli files)

CIS 341: Compilers 26

Namespaces

* In C and FORTRAN: all global identifiers are visible everywhere
* Problem:

— Can’t have two global variables or functions with the same name

— (Also, linker doesn’t type check)
 Solutions:

— C++, Java qualified identifiers: C.x or P,.P,.P;.C.x (where C is a class
name)

— Modula-3, OCaml: qualified identifiers + renaming
— Java, Modula-3, OCaml: link-time type checking

« Wrinkle: object code formats typically have a flat name space
— Need to mangle qualified identifiers
— e.g. C++: int C::f(int x) becomes £ 1Ci

CIS 341: Compilers 27

Linking
Input: File f1.c File f2.c

extern int x; int x = 341;

void main() {
printf(“%d”, x);

}
compiles to asm: f1.s f2.s
assembles to obj: f1.0 f2.0

linker T~ a.out —

* Problem: compiler can’t generate code to access variable x because
its address is unknown.

 Solution: Generate placeholder reference to x in f1.s, generate
definition of x in f2.s, linker patches the files together, replacing
placeholders in f1.s with actual value from {2.s

— Exact mechanism depends on linker/OS object file format

CIS 341: Compilers 28

Encapsulation

It's often useful to hide some information contained in a module.
Example:

String[] names; // should be hidden
String[] passwords; // should be hidden
bool check password(String n, String p) {

int j = 0;
while (Jj < names.length) {
if (names[]J] == n & passwords[]] == p)
return true;
j =3+ 1;
}
return false;

Encapsulation can protect a module’s data from tampering
— Good software engineering practices rely on encapsulation.

CIS 341: Compilers

29

Encapsulation Mechanisms

« Fundamentally, need a way to indicate which identifiers should be
exported from a module.

« C++/Java: “public” vs. “private” qualifiers:

class PWChecker {
private String[] names; // should be hidden

private String[] passwords; // should be hidden
public bool check password(String n, String p) {..} }

* ML/ Modula-3: separate interfaces (omit hidden identifiers):

module type PWChecker = sig

val check password : String * String -> bool

(* Note: no declaration for names or password *)
end

C: “static” qualifier

static int check password(char *n, char *p)

CIS 341: Compilers 30

Modules as Records

* Records (or structs) bundle values together, mapping names to values.

* Modules also bundle values together...
— Except that modules are computed a load time

— They are (usually) 2n class (e.g. modules cannot be passed arguments to

functions). (OCaml v. 3.12 has support for first-class modules.)

« But... module interfaces look like record types:
module PWC = struct

let
let
let
let
end
sig
val
val

end

names : string array = ..
passwords : string array = ..
check password (n:string, p:string):bool = ..

is name (n:string):bool = ..

check password : string * string -> bool

is name : string -> bool

CIS 341: Compilers

Abstract Data Types

Key idea: abstract type
— An identifier representing an unknown type

Abstract Data Type is
— A type identifier (possibly parameterized) +
— Declared operations on that type +
— Concrete type definition (a representation) +
— Concrete implementation of the operations

_ Interface
—

— Implementation

IntSet interface in OCaml:

module type IntSet = sig

type intset (* Note: no type definition *)
val empty : intset

val insert : int -> intset -> intset

val has : int -> intset -> bool

end

CIS 341: Compilers

IntSet example in OCaml

module IntSetl| : IntSet = struct
type intset = int list

let empty = [] This signature ascription seals
let insert i s = i::s the modules with an abstract
let rec has = .. type, hiding the representation
of intset.
end

module IntSet2|: IntSet = struct
type intset = Leaf | Node of intset * int * intset
let empty = Leaf
let rec insert i1 s = ..
let rec has = ..

end

CIS 341: Compilers

33

Implementing Abstract Types

« Representation of the abstract type is hidden from code other than the
implementation itself

— CLU, Ada, Modula-3, ML

« Because external code doesn’t know representation, it can’t violate the
abstraction boundary

— e.g. break representation invariants

 Positive: The same interface can be reimplemented multiple ways.

 Positive: Module signatures can bundle together multiple related
abstract types.

« Negative: Compiler doesn’t know representation either
— When compiling external code it must use level of indirection
— No stack allocation of abstract types

CIS 341: Compilers 34

Type Checking A Module

* Module definitions must agree with the interface in the signature

* Inside the module the concrete types are known
— Extend the context with the definition (or substitute S; for 1)

 This rule also provides width subtyping

Module E'=E 1, =s,1I,=58,..I, =8,
E'r-e,:T, Ere,:T, ... Ere :T E'Fe ;T - --EFe T,
E - struct . sig
type I; = S; ' type I,
type I, = 5; type I,
let v; ¢: T, = e, val v; : T,
let v, ¢ T, = e, val v, : T,
end end

CIS 341: Compilers 35

Classes

 Fields or instance variables:

— Values may differ from object to object (not shared)
— Usually mutable
— Presence inherited from the superclass

* Methods:
— (Function) values shared among all instances of a class
— Code inherited from the superclass
— Immutable (usually)

— Usually take an implicit argument that refers to the object itself
(this or self)

 All components have visibility modifiers
— public/private/protected (subclass visible)

CIS 341: Compilers

Objects as Abstract Data Types (ADTs)

implementation

via interface ascription

Obijects: another way of extending records to ADTs
Source code for the class defines the concrete types and

Interface defined either implicitly (via public members) or explicitly

class IntSetl implements IntSet {
private List<Integer> rep;
public IntSetl() {

rep = new LinkedList<Integer>();}
public IntSetl insert(int i) {

rep.add(new Integer(i));
return this;}

public boolean has(int i) ({
return rep.contains(new Integer(i));}

public int size() { return rep.size(); }

interface IntSet {
public IntSet insert(int i);
public boolean has(int i);
public int size();

CIS 341: Compilers

37

Classes in C++/)Java

 Classes have private/public visibility qualifiers that hide part of the
object.

» Aclass is a partially abstract type
— (Note: do not confuse with Java’s ‘abstract’ keyword)

* Interface file declares the representation
— Method code is (mostly) hidden from the outside

* Positive: This mechanism allows external code to know how much
space each object takes while still providing encapsulation

— Objects can be stack allocated (good for cache coherence/performance)

« Negative: Change to representation can require complete
recompilation, even of external code

— C++ is notoriously slow to compile

« Negative: Each class defines only a single type.

CIS 341: Compilers 38

IntSet example in C

e intset.h:

struct intset;

int has(int i,

extern struct intset *empty;
struct intset *insert(int 1,

struct intset

struct intset *s);
*s);

* intset.c:

#include "intset.h"

struct intset {struct intset

int val;

struct intset

struct intset *empty = NULL;

struct intset *insert(int 1,

int has(int i,

CIS 341: Compilers

struct intset

*left;
*right; };

struct intset *s) {..}

*s) {..}

39

No Abstraction in C

C provides hiding/encapsulation but no abstraction.

(Unchecked) Casts allow any client code to violate the representation
invariants of the module.

CIS 341: Compilers 40

FULL OAT’S TYPE SYSTEM

Zdancewic CIS 341: Compilers

Class Hierarchy

« The set of class interfaces form a class hierarchy

A class interface for C consists of:

< D C’s superclass
(t1 .. tn) -> C C’s constructor signature
x1:t1 ... xn:tn C’s field types

m1 : ftyp1 ... mk: ftypk C’s method types

* The hierarchy H must be consistent:
if C<:D then D is either “Object” or defined earlier in H

Zdancewic CIS 341: Compilers

42

Example from HW5

 Full Oat distinguishes “possibly nul

null” references:

* Types: t::
bool
int
null
ref?
ref
ref ::=
C
string

tll

Zdancewic CIS 341: Compilers

I//

references from “definitely not

// the type of the ‘null’ constant
// possibly null reference
// definitely not-null reference

// class type

// array types

43

