
CIS 341: COMPILERS
Lecture 17

Announcements
•  Reminder: HW4 Compiling OAT v.1
•  DUE: Thursday, March 26th
•  IF YOU HAVEN’T STARTED, YOU ARE DOOMED

Zdancewic CIS 341: Compilers 2

What are types, anyway?
•  A type is just a predicate on the set of values in a system.

–  For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

–  Equivalently, we can think of a type as just a subset of all values.

•  For efficiency and tractability, the predicates are usually taken to be
very simple.
–  Types are an abstraction mechanism

•  We can easily add new types that distinguish different subsets of
values:

type tp =
 | IntT (* type of integers *)
 | PosT | NegT | ZeroT (* refinements of ints *)
 | BoolT (* type of booleans *)
 | TrueT | FalseT (* subsets of booleans *)
 | AnyT (* any value *)

CIS 341: Compilers 3

Subtyping and Upper Bounds
•  If we think of types as sets of values, we have a natural inclusion

relation: Pos ⊆ Int
•  This subset relation gives rise to a subtype relation: Pos <: Int
•  Such inclusions give rise to a subtyping hierarchy:

•  Given any two types T1 and T2, we can calculate their least upper
bound (LUB) according to the hierarchy.
–  Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
–  Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on
types.

CIS 341: Compilers 4

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

“If” Typing Rule Revisited
•  For statically unknown conditionals, we want the return value to be

the LUB of the types of the branches:

•  Note that LUB(T1, T2) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T1 or
type T2.

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁ T2
•  LUB is also called the join operation.

CIS 341: Compilers 5

E ⊢ e1 : bool E ⊢ e2 : T1 E ⊢ e3 : T2

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Subtyping Hierarchy
•  A subtyping hierarchy:

•  The subtyping relation is a partial order:
–  Reflexive: T <: T for any type T
–  Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3

–  Antisymmetric: It T1 <: T2 and T2 <: T1 then T1 = T2

CIS 341: Compilers 6

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

Soundness of Subtyping Relations
•  We don’t have to treat every subset of the integers as a type.

–  e.g., we left out the type NonNeg

•  A subtyping relation T1 <: T2 is sound if it approximates the underlying
semantic subset relation.

•  Formally: write ⟦T⟧ for the subset of (closed) values of type T
–  i.e. ⟦T⟧ = {v | ⊢ v : T}
–  e.g. ⟦Zero⟧ = {0}, ⟦Pos⟧ = {1, 2, 3, …}

•  If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound.
–  e.g. Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...}
–  e.g. Int <: Pos is not sound, since it is not the case that

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…}

CIS 341: Compilers 7

Soundness of LUBs
•  Whenever you have a sound subtyping relation, it follows that:

 ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧
–  Note that the LUB is an over approximation of the “semantic union”
–  Example: ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇
 {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧

•  Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

•  It just so happens that LUBs on types <: Int correspond to +

CIS 341: Compilers 8

E ⊢ e1 : T1 E ⊢ e2 : T2 T1 <: Int T2 <: Int

E ⊢ e1 + e2 : T1 ⋁ T2

ADD

Subsumption Rule
•  When we add subtyping judgments of the form T <: S we can

uniformly integrate it into the type system:

•  Subsumption allows any value of type T to be treated as an S
whenever T <: S.

•  Adding this rule makes the search for typing derivations more difficult
–  This rule can be applied anywhere, since T <: T.
–  But… careful engineering of the typing system can incorporate the

subsumption rule into a deterministic algorithm.
–  Basic Idea: Use subsumption only where absolutely necessary

•  When checking an argument expression against a function type
•  When checking an expression against a declaration type

CIS 341: Compilers 9

E ⊢ e : T T <: S

E ⊢ e : S

SUBSUMPTION

Checked Downcasting
•  What happens if we have an Int but need something of type Pos?

–  At compile time, we don’t know whether the Int is greater than zero.
–  At run time, we can find out.

•  Add a “checked downcast”

•  At runtime, ifPos checks whether e1 is > 0. If so, branches to e2 and
otherwise branches to e3.

•  Inside the expression e2, x is the name for e1’s value, which is known
to be strictly positive because of the dynamic check.

•  Note that such rules force the programmer to add the appropriate
checks
–  We could give integer division the type: Int -> NonZero -> Int

CIS 341: Compilers 10

E ⊢ e1 : Int E, x : Pos ⊢ e2 : T2 E ⊢ e3 : T3
���

E ⊢ if? (Pos x = e1) e2 else e3 : T2 ⋁ T3

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers 11

���

Extending Subtyping to Other Types
•  What about subtyping for tuples?

–  Intuition: whenever a program expects���
something of type S1 * S2, it is sound ���
to give it a T1 * T2.

–  Example: (Pos * Neg) <: (Int * Int)

•  What about functions?

•  When is T1 -> T2 <: S1 -> S2 ?

CIS 341: Compilers 12

T1 <: S1 T2 <: S2

(T1 * T2) <: (S1 * S2)

Subtyping for Function Types
•  One way to see it:

•  Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

CIS 341: Compilers 13

Expected function

Actual function S1 S2 T1 T2

S1 <: T1 T2 <: S2

(T1 -> T2) <: (S1 -> S2)

Immutable Records
•  Record type: {lab1:T1; lab2:T2; … ; labn:Tn}

–  Each labi is a label drawn from a set of identifiers.

CIS 341: Compilers 14

E ⊢ e1 : T1 E ⊢ e2 : T2 … E ⊢ en : Tn

E ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

E ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

E ⊢ e.labi : Ti

PROJECTION

Immutable Record Subtyping
•  Depth subtyping:

–  Corresponding fields may be subtypes

•  Width subtyping:
–  Subtype record may have more fields:

CIS 341: Compilers 15

T1 <: U1 T2 <: U2 … Tn <: Un

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}

DEPTH

m ≤ n

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}

WIDTH

Immutable Record Subtyping (cont’d)
•  Width subtyping assumes an implementation in which order of fields

in a record matters:���
 {x:int; y:int} ≠ {y:int; x:int}

•  But: {x:int; y:int; z:int} <: {x:int; y:int}
–  Implementation: a record is a struct, subtypes just add fields at the end of

the struct.

•  Alternative: allow permutation of record fields:���
 {x:int; y:int} = {y:int; x:int}
–  Implementation: compiler sorts the fields before code generation.
–  Need to know all of the fields to generate the code

•  Permutation is not directly compatible with width subtyping:
 {x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

CIS 341: Compilers 16

If you want both:
•  If you want permutability & dropping, you need to either copy (to

rearrange the fields) or use a dictionary like this:

p = {x=42; y=55; z=66}:{x:int; y:int; z:int}

q : {y:int; z:int} = p

x y z

42 55 66

y z

dictionary

dictionary

Subtyping and References
•  What is the proper subtyping relationship for references and arrays?

•  Suppose we have NonZero as a type and the division operation has
type: Int -> NonZero -> Int
–  Recall that NonZero <: Int

•  Should (NonZero ref) <: (Int ref) ?
•  Consider this program:

Int bad(NonZero ref r) {
 Int ref a = r; (* OK because (NonZero ref <: Int ref*)
 a := 0; (* OK because 0 : Zero <: Int *)
 return (42 / !r) (* OK because !r has type NonZero *)
}

CIS 341: Compilers 18

Mutable Structures are Invariant
•  Covariant reference types are unsound

–  As demonstrated in the previous example

•  Contravariant reference types are also unsound
–  i.e. If T1 <: T2 then ref T2 <: ref T1 is also unsound
–  Exercise: construct a program that breaks contravariant references.

•  Moral: Mutable structures are invariant: ���
 T1 ref <: T2 ref implies T1 = T2

•  Same holds for arrays, OCaml-style mutable records, object fields, etc.
–  Note: Java and C# get this wrong. They allows covariant array subtyping,

but then compensate by adding a dynamic check on every array update!

CIS 341: Compilers 19

Another Way to See It
•  We can think of a reference cell as an immutable record (object) with

two functions (methods) and some hidden state:���
 T ref ≃ {get: unit -> T; set: T -> unit}
–  get returns the value hidden in the state.
–  set updates the value hidden in the state.

•  When is T ref <: S ref?
•  Records are like tuples: subtyping extends pointwise over each

component.
•  {get: unit -> T; set: T -> unit} <: {get: unit -> S; set: S -> unit}

–  get components are subtypes: unit -> T <: unit -> S���
set components are subtypes: T -> unit <: S -> unit

•  From get, we must have T <: S (covariant return)
•  From set, we must have S <: T (contravariant arg.)
•  From T <: S and S <: T we conclude T = S.

CIS 341: Compilers 20

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers 21

���

Structural vs. Nominal Typing
•  Is type equality / subsumption defined by the structure of the data or the

name of the data?
•  Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

•  Type abbreviations are treated “structurally”���
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers 22

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents are  
 isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)

Nominal Subtyping in Java
•  In Java, Classes and Interfaces must be named and their relationships

explicitly declared:

•  Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
–  Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers 23

(* Java: *)
interface Foo {
 int foo();
}

class C { /* Does not implement the Foo interface */
 int foo() {return 2;}
}

class D implements Foo {
 int foo() {return 341;}
}

MODULARITY & ABSTRACTION

Zdancewic CIS 341: Compilers 24

���

Modular Programming
•  Programs are typically composed of many modules.

–  Separate compilation – scalable to millions of lines
–  Code reuse – libraries, sharing
–  Namespace management
–  Encapsulation – hiding complexity
–  Abstraction & abstract data-types
–  Security

•  What is a module?
–  A collection of named, related values and types
–  Definitions (partially) hidden from the outside

•  Examples: Java classes & packages, C++ classes, Modula-3 modules,
SML/Ocaml structures & functors, CLU clusters, C source files, …

CIS 341: Compilers 25

Separate Compilation
•  Program is made of several compilation units

–  Independent inputs to the compiler

•  Avoids needing to recompile the whole program for every change
•  Code is more reusable (libraries)
•  Examples:

–  C: .c files / Java: .java files / OCaml: .ml files

•  For building a whole program out of compilation units:
•  Need to know how to reference values in other units

–  Solution: namespaces + linking

•  Need to know datatype sizes (for code generation) or types (for type
safety)
–  Solution: interfaces (C: .h files / Java: .class files / OCaml: .mli files)

CIS 341: Compilers 26

Namespaces
•  In C and FORTRAN: all global identifiers are visible everywhere
•  Problem:

–  Can’t have two global variables or functions with the same name
–  (Also, linker doesn’t type check)

•  Solutions:
–  C++, Java qualified identifiers: C.x or P1.P2.P3.C.x (where C is a class

name)
–  Modula-3, OCaml: qualified identifiers + renaming
–  Java, Modula-3, OCaml: link-time type checking

•  Wrinkle: object code formats typically have a flat name space
–  Need to mangle qualified identifiers
–  e.g. C++: int C::f(int x) becomes f__1Ci

CIS 341: Compilers 27

Linking
Input: File f1.c File f2.c

compiles to asm: f1.s f2.s
assembles to obj: f1.o f2.o
linker a.out
•  Problem: compiler can’t generate code to access variable x because

its address is unknown.
•  Solution: Generate placeholder reference to x in f1.s, generate

definition of x in f2.s, linker patches the files together, replacing
placeholders in f1.s with actual value from f2.s
–  Exact mechanism depends on linker/OS object file format

CIS 341: Compilers 28

extern int x;

void main() {
 printf(“%d”, x);
}

int x = 341;

Encapsulation
•  It’s often useful to hide some information contained in a module.
•  Example:

•  Encapsulation can protect a module’s data from tampering
–  Good software engineering practices rely on encapsulation.

CIS 341: Compilers 29

String[] names; // should be hidden
String[] passwords; // should be hidden
bool check_password(String n, String p) {
 int j = 0;
 while (j < names.length) {
 if (names[j] == n & passwords[j] == p)
 return true;
 j = j + 1;
 }
 return false;
}

Encapsulation Mechanisms
•  Fundamentally, need a way to indicate which identifiers should be

exported from a module.
•  C++/Java: “public” vs. “private” qualifiers:

•  ML / Modula-3: separate interfaces (omit hidden identifiers):

•  C: “static” qualifier

CIS 341: Compilers 30

class PWChecker {
private String[] names; // should be hidden
private String[] passwords; // should be hidden
public bool check_password(String n, String p) {…} }

module type PWChecker = sig
 val check_password : String * String -> bool
 (* Note: no declaration for names or password *)
end

static int check_password(char *n, char *p)

Modules as Records
•  Records (or structs) bundle values together, mapping names to values.
•  Modules also bundle values together…

–  Except that modules are computed a load time
–  They are (usually) 2nd class (e.g. modules cannot be passed arguments to

functions). (OCaml v. 3.12 has support for first-class modules.)

•  But… module interfaces look like record types:
module PWC = struct
 let names : string array = …
 let passwords : string array = …
 let check_password (n:string, p:string):bool = …
 let is_name (n:string):bool = …
end :
sig
 val check_password : string * string -> bool
 val is_name : string -> bool
end

CIS 341: Compilers 31

Abstract Data Types
•  Key idea: abstract type

–  An identifier representing an unknown type

•  Abstract Data Type is
–  A type identifier (possibly parameterized) +
–  Declared operations on that type +
–  Concrete type definition (a representation) +
–  Concrete implementation of the operations

•  IntSet interface in OCaml:
module type IntSet = sig
 type intset (* Note: no type definition *)
 val empty : intset
 val insert : int -> intset -> intset
 val has : int -> intset -> bool
end

CIS 341: Compilers 32

Interface

Implementation

IntSet example in OCaml

module IntSet1 : IntSet = struct
 type intset = int list
 let empty = []
 let insert i s = i::s
 let rec has = …
end

module IntSet2 : IntSet = struct
 type intset = Leaf | Node of intset * int * intset
 let empty = Leaf
 let rec insert i s = …
 let rec has = …
end

CIS 341: Compilers 33

This signature ascription seals
the modules with an abstract

type, hiding the representation
of intset.

Implementing Abstract Types
•  Representation of the abstract type is hidden from code other than the

implementation itself
–  CLU, Ada, Modula-3, ML

•  Because external code doesn’t know representation, it can’t violate the
abstraction boundary
–  e.g. break representation invariants

•  Positive: The same interface can be reimplemented multiple ways.
•  Positive: Module signatures can bundle together multiple related

abstract types.
•  Negative: Compiler doesn’t know representation either

–  When compiling external code it must use level of indirection
–  No stack allocation of abstract types

CIS 341: Compilers 34

Type Checking A Module
•  Module definitions must agree with the interface in the signature
•  Inside the module the concrete types are known

–  Extend the context with the definition (or substitute Si for Ii)

•  This rule also provides width subtyping

CIS 341: Compilers 35

E’ ⊢ e1 : T1 E’ ⊢ e2 : T2 … E’ ⊢ em : Tm E ’⊢ em+1 : Tm+1 …E’ ⊢ ek : Tk

E ⊢ :

Module

struct  
 type I1 = S1
 …  
 type In = Sn
 let v1 : T1 = e1
 …  
 let vk : Tk = ek
end

sig  
 type I1
 …  
 type In  
 val v1 : T1
 …  
 val vm : Tm  
end

E’ = E, I1 = S1, I2 = S2, … In = Sn

Classes
•  Fields or instance variables:

–  Values may differ from object to object (not shared)
–  Usually mutable
–  Presence inherited from the superclass

•  Methods:
–  (Function) values shared among all instances of a class
–  Code inherited from the superclass
–  Immutable (usually)
–  Usually take an implicit argument that refers to the object itself ���

(this or self)

•  All components have visibility modifiers
–  public/private/protected (subclass visible)

CIS 341: Compilers 36

Objects as Abstract Data Types (ADTs)
•  Objects: another way of extending records to ADTs
•  Source code for the class defines the concrete types and

implementation
•  Interface defined either implicitly (via public members) or explicitly

via interface ascription

CIS 341: Compilers 37

class IntSet1 implements IntSet {
 private List<Integer> rep;
 public IntSet1() {

 rep = new LinkedList<Integer>();}

 public IntSet1 insert(int i) {
 rep.add(new Integer(i));
 return this;}

 public boolean has(int i) {
 return rep.contains(new Integer(i));}

 public int size() { return rep.size(); }
}

interface IntSet {
 public IntSet insert(int i);
 public boolean has(int i);
 public int size();
}

Classes in C++/Java
•  Classes have private/public visibility qualifiers that hide part of the

object.
•  A class is a partially abstract type

–  (Note: do not confuse with Java’s ‘abstract’ keyword)

•  Interface file declares the representation
–  Method code is (mostly) hidden from the outside

•  Positive: This mechanism allows external code to know how much
space each object takes while still providing encapsulation
–  Objects can be stack allocated (good for cache coherence/performance)

•  Negative: Change to representation can require complete
recompilation, even of external code
–  C++ is notoriously slow to compile

•  Negative: Each class defines only a single type.

CIS 341: Compilers 38

IntSet example in C
•  intset.h:

•  intset.c:

CIS 341: Compilers 39

struct intset;
extern struct intset *empty;
struct intset *insert(int i, struct intset *s);
int has(int i, struct intset *s);

#include "intset.h"

struct intset {struct intset *left;  
 int val; struct intset *right; };

struct intset *empty = NULL;

struct intset *insert(int i, struct intset *s) {…}
int has(int i, struct intset *s) {…}
	

No Abstraction in C
•  C provides hiding/encapsulation but no abstraction.

•  (Unchecked) Casts allow any client code to violate the representation
invariants of the module.

CIS 341: Compilers 40

FULL OAT’S TYPE SYSTEM

Zdancewic CIS 341: Compilers 41

���

Class Hierarchy
•  The set of class interfaces form a class hierarchy

A class interface for C consists of:���
 <: D C’s superclass���
 (t1 .. tn) -> C C’s constructor signature���
 x1:t1 … xn:tn C’s field types���
 m1 : ftyp1 … mk : ftypk C’s method types

•  The hierarchy H must be consistent:
 if C <: D then D is either “Object” or defined earlier in H

Zdancewic CIS 341: Compilers 42

Example from HW5
•  Full Oat distinguishes “possibly null” references from “definitely not

null” references:

•  Types: t ::= ���
 | bool ���
 | int ���
 | null // the type of the ‘null’ constant���
 | ref? // possibly null reference���
 | ref // definitely not-null reference ���
 ref ::= ���
 | C // class type���
 | string ���
 | t[] // array types

Zdancewic CIS 341: Compilers 43

