Lecture 21

CIS 341: COMPILERS

Announcements

« HWa6: Dataflow Analysis
— Available soon

e Talk: Sumit Gulwani of Microsoft

“Data Manipulation using Programming By Examples and Natural Language”
— 3:00-4:00 in Wu & Chen

* My office hours: 4:00 — 5:15 today

Zdancewic CIS 341: Compilers 2

CODE ANALYSIS

Zdancewic CIS 341: Compilers

Iterative Dataflow Analysis

Find a solution to those constraints by starting from a rough guess.
Start with: in[n] = @ and out[n] = O

They don't satisfy the constraints:

— in[n] 2 use[n]

— in[n] 2 out[n] - def[n]

— out[n] 2 in[n’] if n” € succ|n]

Idea: iteratively re-compute in[n] and out[n] where forced to by the
constraints.

— Each iteration will add variables to the sets in[n] and out[n]
(i.e. the live variable sets will increase monotonically)
We stop when in[n] and out[n] satisfy these equations:
(which are derived from the constraints above)

— in[n] = use[n] U (out[n] - def[n])
— out[n] = U

M /
n’Esucc[n]m[n]

CIS 341: Compilers

A Worklist Algorithm

« Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := @, out[n] := O
w = new queue with all nodes
repeat until w is empty

let n = w.pop() // pull a node off the queue
old_in = in[n] // remember old in[n]
outln] := U c.ccminln’]
in[n] := use[n] U (out[n] - def[n])
if (old_in !=in[n]), // if in[n] has changed

for all m in pred[n], w.push(m)// add to worklist
end

CIS 341: Compilers

OTHER DATAFLOW ANALYSES

Zdancewic CIS 341: Compilers

Generalizing Dataflow Analyses

 The kind of iterative constraint solving used for liveness analysis
applies to other kinds of analyses as well.
— Reaching definitions analysis
— Available expressions analysis
— Alias Analysis
— Constant Propagation
— These analyses follow the same 3-step approach as for liveness.

* To see these as an instance of the same kind of algorithm, the next few
examples to work over a canonical intermediate instruction
representation called quadruples

— Allows easy definition of def[n] and use[n]

— A “looser” variant of LLVM’s IR that doesn’t require the “static single
assignment” — i.e. it has mutable local variables

CIS 341: Compilers 7

Quadruple Format

* A Quadruple sequence is just a control-flow graph (flowgraph) where
each node is a quadruple:

e Quadruple forms n: def[n] use[n] description
a=bopc {a} {b,c} arithmetic
a = [b] {a} {b} load
lal =b %) {b} store
a=fb,,...,b.) {a} {b,,...,b,} call w/return
f(b,,...,b,) %) {b,,...,b,} call noreturn
jump L %) %) jump
ifagoto Ll elsel2 O {a} branch
return a %) {a} return

CIS 341: Compilers

REACHING DEFINITIONS

Zdancewic CIS 341: Compilers

Reaching Definition Analysis

* Question: what uses in a program does a given variable definition
reach?

 This analysis is used for constant propagation & copy prop.

— If only one definition reaches a particular use, can replace use by the
definition (for constant propagation).

— Copy propagation additionally requires that the copied value still has its
same value — computed using an available expressions analysis (next)

 Input: Quadruple CFG

« Output: in[n] (resp. out[n]) is the set of nodes defining some variable
such that the definition may reach the beginning (resp. end) of node n

CIS 341: Compilers 10

Example of Reaching Definitions

* Results of computing reaching definitions on this simple CFG:

Fb:a+2

out[T]: {1}
in[2]: {1}

out[2]: {1,2}
in[3]: {1,2}

O(-CT

? out[3]: {2,3}
l in[4]: {2,3}
Heturn b *a

CIS 341: Compilers

Reaching Definitions Step 1

+ Define the sets of interest for the analysis
 Let defs[a] be the set of nodes that define the variable a
* Define gen[n] and kill[n] as follows:

* Quadruple forms n: gen|[n] kill[n]
a=bopc {n} defs[a] - {n}
a=load b {n} defs[a] - {n}
[a]l =b D %
a=fb,,...,b.) {n} defs[a] - {n}
f(by,...,b,) %) %)
jump L %) %)
ifagotolLlelsel2 O %)

L: %) %)
return a %) %)

CIS 341: Compilers

12

Reaching Definitions Step 2

 Define the constraints that a reaching definitions solution must satisfy.

* out[n] 2 gen[n]
“The definitions that reach the end of a node at least include the
definitions generated by the node”

* in[n] 2 out[n’] if n’isin pred|n]
“The definitions that reach the beginning of a node include those that
reach the exit of any predecessor”

e out[n] U kill[n] 2 in[n]
“The definitions that come in to a node either reach the end of the
node or are killed by it.”

— Equivalently: out[n] 2 in[n] - kill[n]

CIS 341: Compilers 13

Reaching Definitions Step 3

« Convert constraints to iterated update equations:

° in[n] = U n’Epred[n
* out[n] :=gen[n] U (in[n] - kill[n])

]out[n’]

 Algorithm: initialize in[n] and out[n] to @
— lIterate the update equations until a fixed point is reached

 The algorithm terminates because in[n] and out[n] increase only
monotonically

— At most to a maximum set that includes all variables in the program

 The algorithm is precise because it finds the smallest sets that satisfy
the constraints.

CIS 341: Compilers 14

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers

Available Expressions

 ldea: want to perform common subexpression elimination:
— a=x+1 a=x+1

l.:>“:x+1 [> B.:a

* This transformation is safe if x+1 means computes the same value at
both places (i.e. x hasn’t been assigned).

— “x+1" is an available expression

 Dataflow values:
— in[n] = set of nodes whose values are available on entry to n
— out[n] = set of nodes whose values are available on exit of n

CIS 341: Compilers 16

Available Expressions Step 1

 Define the sets of values
» Define gen[n] and kill[n] as follows:

* Quadruple forms n: gen|[n] kill[n]
a=bopc {n} - kill[n] uses|a]
a = [b] {n} - kill[n] uses|a]
[al =b %) uses[[x]]
(for all x that may equal a)
jump L D % .
if a goto L1 else L2 %) %) [a\ll(i)at:”timefor:?nea(iig?\r..!may
L: %) %
a=fb,,...,b.) %) uses[a] U uses| [x]]
(for all x)
f(b,,...,b.) %) uses| [x]] (for all x)
return a %) %

Note that functions are
assumed to be impure...

CIS 341: Compilers 17

Available Expressions Step 2

« Define the constraints that an available expressions solution must
satisfy.

« out[n] 2 gen|n]
“The expressions made available by n that reach the end of the node”

* in[n] € out[n’] ifn’isin pred|[n]
“The expressions available at the beginning of a node include those
that reach the exit of every predecessor”

« out[n] U kill[n] 2 in[n]
“The expressions available on entry either reach the end of the node
or are killed by it.”

— Equivalently: out[n] 2 in[n] - kill[n]

Note similarities and
differences with
constraints for
“reaching definitions”.

CIS 341: Compilers 18

Available Expressions Step 3

« Convert constraints to iterated update equations:

e In[n]:= ﬂ

* out[n] :=gen[n] U (in[n] - kill[n])

/
n’Epred[n]OuJ[[n]

« Algorithm: initialize in[n] and out[n] to {set of all nodes}
— lIterate the update equations until a fixed point is reached

 The algorithm terminates because in[n] and out[n] decrease only
monotonically

— At most to a minimum of the empty set

 The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CIS 341: Compilers 19

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers

Comparing Dataflow Analyses

Look at the update equations in the inner loop of the analyses

Liveness: (backward)
— Let gen[n] = use[n] and kill[n] = def[n]

— out[n] :== in[n’]

n’ €succ|n]

— in[n] := gen[n] U (out[n] - kill[n])

Reaching Definitions: (forward)
— inlnl = U | eqmoutin’]

— out[n] :=gen[n] U (in[n] - kill[n])

Available Expressions: (forward)
— in[n] := N v €predinOUtIN’]

— out[n] :=gen[n] U (in[n] - kill[n])

CIS 341: Compilers

Common Features

 All of these analyses have a domain over which they solve constraints.
— Liveness, the domain is sets of variables
— Reaching defns., Available exprs. the domain is sets of nodes
 Each analysis has a notion of gen[n] and kill[n]
— Used to explain how information propagates across a node.
 Each analysis is propagates information either forward or backward
— Forward: in[n] defined in terms of predecessor nodes’ out]]
— Backward: out[n] defined in terms of successor nodes’ in[]
« Each analysis has a way of aggregating information
— Liveness & reaching definitions take union (U)
— Available expressions uses intersection (N)
— Union expresses a property that holds for some path (existential)
— Intersection expresses a property that holds for all paths (universal)

CIS 341: Compilers 22

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

1. A domain of dataflow values £ l)
— e.g. L =the powerset of all variables
— Think of € L as a property, then “x € 2" n
means “x has the property” l F.(2)
2. For each node n, a flow function F,: L — L
— So far we've seen F_(2) = gen[n] U (2 - kill[n])
— So: out[n] = F(in[n])
— “If 2 is a property that holds before the node n,
then F_(2) holds after n” 4 2,
3. A combining operator M \/
— “If we know either 2, or 2, holds on entry
lQ1 ne,

to node n, we know at most 2, 1 £,”

- in[n] = ﬂn/epred[n]out[n/]

CIS 341: Compilers 23

Generic Iterative (Forward) Analysis

forall n, in[n] := T, out[n] :=T
repeat until no change

for all n
|n[n] .= Hn/Epred[n]OUt[ﬂ/]
out[n] :=F_(in[n])
end
end

* Here, T € L (“top”) represents having the “maximum” amount of
information.

— Having “more” information enables more optimizations
— “Maximum” amount could be inconsistent with the constraints.
— lIteration refines the answer, eliminating inconsistencies

CIS 341: Compilers 24

Structure of L

 The domain has structure that reflects the “amount” of information
contained in each dataflow value.
* Some dataflow values are more informative than others:
— Write £, £ 2, whenever 2, provides at least as much information as £,.
— The dataflow value ¢, is “better” for enabling optimizations.

« Example 1: for liveness analysis, smaller sets of variables are more
informative.

— Having smaller sets of variables live across an edge means that there are
fewer conflicts for register allocation assignments.

— So: 2,CQ ifandonlyif?, 2 ¢,

« Example 2: for available expressions analysis, larger sets of nodes are
more informative.

— Having a larger set of nodes (equivalently, expressions) available means
that there is more opportunity for common subexpression elimination.

— So: 2, L% ifandonlyif2, € ¢,

CIS 341: Compilers 25

L as a Partial Order

« Lis a partial order defined by the ordering relation C.
« A partial order is an ordered set.
* Some of the elements might be incomparable.
— That is, there might be 2,, 2, € L such that neither 2, £ 2, nor , C 2,

 Properties of a partial order:
— Reflexivity: 2EQ
— Transitivity: 2, £ 2, and €, E 2, implies 2, C ,
— Anti-symmetry: 2, £ 2, and 2, £ 2, implies ¢, = €,

« Examples:
— Integers ordered by <
— Types ordered by <:
— Sets ordered by € or 2

CIS 341: Compilers 26

Subsets of {a,b,c} ordered by S

Partial order presented as a Hasse diagram.

{a,b,c}=T

Height is 3
—>
K
111
o
No

order C is & meet M is N join Uis U

CIS 341: Compilers 27

Meets and Joins

The combining operator 1 is called the “meet” operation.
It constructs the greatest lower bound:
— ¢ ne L2 and 2, N C &

“the meet is a lower bound”

— IfeEQ and? C 2, then2 C 2, M&,
“there is no greater lower bound”

Dually, the LI operator is called the “join” operation.
It constructs the least upper bound:
- 2 EQue and &, C 2 18,
“the join is an upper bound”
— Ife, £ 2 and®?, C 2 thenQ, g2, C 2
“there is no smaller upper bound”

A partial order that has all meets and joins is called a /attice.
— If it has just meets, it’s called a meet semi-lattice.

CIS 341: Compilers

Another Way to Describe the Algorithm

 Algorithm repeatedly computes (for each node n):
e out[n] :=F_(in[n])

» Equivalently: out[n] :=F (I'l out[n’])

n’ €pred[n
— By definition of in[n]
« We can write this as a simultaneous update of the vector of out[n]
values:
— let x,, = out[n]

— LetX =(x{, X,, ..., X,) it'savector of points in L

- F(X) — (F1(|_|jEpred[1]OUt[j])/ F2<|_|jEpred[2]OUt[j])/ sy Fn(l_lepred[n]OUt[j]))

* Any solution to the constraints is a fixpoint X of F
— p.e. FX) =X

CIS 341: Compilers 29

Iteration Computes Fixpoints

. LetX,=(T,T, ..., T)

 Each loop through the algorithm apply F to the old vector:
X, = F(X,)
X, = F(X;)

+ FI(X) = F(F(X)

« A fixpoint is reached when FXX) = F<+1(X)
— That’s when the algorithm stops.

« Wanted: a maximal fixpoint
— Because that one is more informative/useful for performing optimizations

CIS 341: Compilers 30

Monotonicity & Termination

Each flow function F, maps lattice elements to lattice elements; to be
sensible is should be monotonic:

F: L — L is monotonic iff:
2, C 2, implies that F(2,) C F(2,)

— Intuitively: “If you have more information entering a node, then you have
more information leaving the node.”

Monotonicity lifts point-wise to the function: F : £ — L1
— vector (X;, X5, ..., X,) E (Y, Vo, ..., Y, iff x.Evy, foreachi

Note that F is consistent: F(X,) t X,

— So each iteration moves at least one step down the lattice (for some
component of the vector)

— ... EFFX)) E KX, E X,

Therefore, # steps needed to reach a fixpoint is at most the height H of
L times the number of nodes: O(Hn)

CIS 341: Compilers 31

Building Lattices?

 Information about individual nodes or variables can be lifted
pointwise:

— If Lis a lattice, thensois {f: X — L } where fC g if and only if
f(x) £ g(x) for all x € X,

 Like types, the dataflow lattices are static approximations to the
dynamic behavior:

Any
— Could pick a lattice based on subtyping: 4/7&
Bool
Aliased /,f\ /\
— Or other information: T Jere A

Unaliased

* Points in the lattice are sometimes called dataflow “facts”

Zdancewic CIS 341: Compilers

See HW6: Dataflow Analysis

IMPLEMENTATION

Zdancewic CIS 341: Compilers 33

Def / Use for SSA

description

e |Instructions n: def[n]

a=bopc {a}
a=loadb {a}
store a, b %
a = allocat {a}

a = bitcast b to u {a}
a=gepblcd, ... {a}

a=fb,,...,b) {a)

f(by,...,b,) %
 Terminators

br L %

brall L2 %)

return a %

CIS 341: Compilers

use[n]
{b,c}
{b}
{b}
%)
{b}
{b,c,d,
{b,,...,
{b,,...,

%
{a}
{a}

D,
b

n

}
}
}

arithmetic

load

store

alloca

bitcast
getelementptr

call w/return

void call (no return)

jump
conditional branch
return

34

