
CIS 341: COMPILERS
Lecture 22

Announcements

•  HW 6: Dataflow Analysis and Optimizations
–  Available later today(?)
–  Due Next Thursday, April 16

•  HW 7: Optimization & Experiments
–  Available next week
–  Due: April 29th

Zdancewic CIS 341: Compilers 2

QUALITY OF DATAFLOW
ANALYSIS SOLUTIONS

Zdancewic CIS 341: Compilers 3

���

Best Possible Solution
•  Suppose we have a control-flow

graph.
•  If there is a path p1 starting from the

root node (entry point of the
function) traversing the nodes ���
n0, n1, n2, … nk

•  The best possible information along
the path p1 is:���
ℓp1 = Fnk(…Fn2(Fn1(Fn0(T)))…)

•  Best solution at the output is some ���
ℓ ⊑ ℓp for all paths p.

•  Meet-over-paths (MOP) solution:���

⨅p∈paths_to[n]ℓp

CIS 341: Compilers 4

e = 1

if x > 0

e = y * 5 e = y * 3

e = y * x

1

2

3 4

5

Best answer here is: ���

F5(F3(F2(F1(T)))) ⨅ F5(F4(F2(F1(T))))

What about quality of iterative solution?

•  Does the iterative solution: out[n] = Fn(⨅n’∈pred[n]out[n’]) compute the
MOP solution?

•  MOP Solution: ⨅p∈paths_to[n] ℓp

•  Answer: Yes, if the flow functions distribute over ⨅
–  Distributive means: ⨅i Fn(ℓi) = Fn(⨅i ℓi)

–  Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in
the control flow graph might mean there are infinitely many paths…)

•  Not all analyses give MOP solution
–  They are more conservative.

CIS 341: Compilers 5

Reaching Definitions is MOP
•  Fn[x] = gen[n] ∪ (x - kill[n])

•  Does Fn distribute over meet ⨅ =∪?

•  Fn[x ⨅ y] ���
 = gen[n] ∪ ((x ∪ y) - kill[n]) ���
 = gen[n] ∪ ((x - kill[n]) ∪ (y - kill[n]))���
 = (gen[n] ∪(x - kill[n])) ∪ (gen[n]∪(y - kill[n])���
 = Fn[x] ∪ Fn[y]���

 = Fn[x] ⨅ Fn[y]

•  Therefore: Reaching Definitions with iterative analysis always
terminates with the MOP (i.e. best) solution.

CIS 341: Compilers 6

“Classic” Constant Propagation
•  Constant propagation can be formulated as a dataflow analysis.

•  Idea: propagate and fold integer constants in one pass:���
x = 1; x = 1;���
y = 5 + x; y = 6;���
z = y * y; z = 36;

•  Information about a single variable:
–  Variable is never defined.
–  Variable has a single, constant value.
–  Variable is assigned multiple values.

CIS 341: Compilers 7

Domains for Constant Propagation
•  We can make a constant propagation lattice L for one variable like

this:

•  To accommodate multiple variables, we take the product lattice, with
one element per variable.
–  Assuming there are three variables, x, y, and z, the elements of the

product lattice are of the form (ℓx, ℓy, ℓz).
–  Alternatively, think of the product domain as a context that maps variable

names to their “abstract interpretations”

•  What are “meet” and “join” in this product lattice?
•  What is the height of the product lattice?

CIS 341: Compilers 8

⟙ = multiple values

⟘ = never defined

…, -3, -2, -1, 0, 1, 2, 3, …

Flow Functions
•  Consider the node x = y op z
•  F(ℓx, ℓy, ℓz) = ?

•  F(ℓx, ⟙, ℓz) = (⟙, ⟙, ℓz)
•  F(ℓx, ℓy, ⟙) = (⟙, ℓy, ⟙)

•  F(ℓx, ⟘, ℓz) = (⟘, ⟘, ℓz)
•  F(ℓx, ℓy, ⟘) = (⟘, ℓy, ⟘)

•  F(ℓx, i, j) = (i op j, i, j)

•  Flow functions for the other nodes are easy…
•  Monotonic?
•  Distributes over meets?

CIS 341: Compilers 9

“If either input might have multiple values���
the result of the operation might too.”

“If either input is undefined���
the result of the operation is too.”

”If the inputs are known constants, ���
calculate the output statically.”

Iterative Solution

CIS 341: Compilers 10

z = 1 z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(⟘, 1, 2) ⨅ (⟘, 2, 1) = (⟘, ⟙, ⟙)

(⟙, ⟙, ⟙) iterative solution

MOP Solution ≠ Iterative Solution

CIS 341: Compilers 11

z = 1 z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(3, 1, 2) ⨅ (3, 2, 1) = (3, ⟙, ⟙) MOP solution

Why not compute MOP Solution?
•  If MOP is better than the iterative analysis, why not compute it instead?

–  ANS: exponentially many paths (even in graph without loops)

•  O(n) nodes
•  O(n) edges
•  O(2n) paths*

–  At each branch���
there is a choice���
of 2 directions

Zdancewic CIS 341: Compilers 12

* Incidentally, a similar idea���
can be used to force ML / Haskell���
type inference to need to construct���
a type that is exponentially big���
in the size of the program!

Dataflow Analysis: Summary
•  Many dataflow analyses fit into a common framework.
•  Key idea: Iterative solution of a system of equations over a lattice of

constraints.
–  Iteration terminates if flow functions are monotonic.
–  Solution is equivalent to meet-over-paths answer if the flow functions

distribute over meet (⨅).

•  Dataflow analyses as presented work for an “imperative” intermediate
representation.
–  The values of temporary variables are updated (“mutated”) during

evaluation.
–  Such mutation complicates calculations
–  SSA = “Single Static Assignment” eliminates this problem, by introducing

more temporaries – each one assigned to only once.
–  Next up: Converting to SSA, finding loops and dominators in CFGs

CIS 341: Compilers 13

LOOPS AND DOMINATORS

Zdancewic CIS 341: Compilers 14

���

Loops in Control-flow Graphs
•  Taking into account loops is important for optimizations.

–  The 90/10 rule applies, so optimizing loop bodies is important

•  Should we apply loop optimizations at the AST level or at a lower
representation?
–  Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them.

•  Loops may be hard to recognize at the quadruple / LLVM IR level.
–  Many kinds of loops: while, do/while, for, continue, goto…

•  Problem: How do we identify loops in the control-flow graph?

CIS 341: Compilers 15

Definition of a Loop
•  A loop is a set of nodes in the control flow graph.

–  One distinguished entry point called the header

•  Every node is reachable ���
from the header &���
the header is reachable ���
from every node.
–  A loop is a strongly ���

connected component

•  No edges enter the loop ���
except to the header

•  Nodes with outgoing edges ���
are called loop exit nodes

CIS 341: Compilers 16

header

exit node

loop
nodes

Nested Loops
•  Control-flow graphs may contain many loops
•  Loops may contain other loops:

CIS 341: Compilers 17

Control Tree:

The control tree ���
depicts the nesting���
structure of the ���
program.

Control-flow Analysis
•  Goal: Identify the loops and nesting structure of the CFG.

•  Control flow analysis is based on the idea of dominators:
•  Node A dominates node B if the only way to reach B from the start

node is through node A.

•  An edge in the graph ���
is a back edge if the ���
target node dominates���
the source node.

•  A loop contains at least���
one back edge.���

CIS 341: Compilers 18

Back Edge

Dominator Trees
•  Domination is transitive:

–  if A dominates B and B dominates C then A dominates C

•  Domination is anti-symmetric:
–  if A dominates B and B dominates A then A = B

•  Every flow graph has a dominator tree
–  The Hasse diagram of the dominates relation

CIS 341: Compilers 19

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

Dominator Dataflow Analysis
•  We can define Dom[n] as a forward dataflow analysis.

–  Using the framework we saw earlier: Dom[n] = out[n] where:

•  “A node B is dominated by another node A if A dominates all of the
predecessors of B.”

–  in[n] := ∩n’∈pred[n]out[n’]

•  “Every node dominates itself.”
–  out[n] := in[n] ∪ {n}

•  Formally: L = set of nodes ordered by ⊆
–  T = {all nodes}
–  Fn(x) = x ∪ {n}
–  ⨅ is ∩

•  Easy to show monotonicity and that Fn distributes over meet.
–  So algorithm terminates and is MOP

CIS 341: Compilers 20

Improving the Algorithm
•  Dom[b] contains just those nodes along the path in the dominator tree

from the root to b:
–  e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
–  There is a lot of sharing among the nodes

•  More efficient way to represent Dom sets is���
to store the dominator tree.
–  doms[b] = immediate dominator of b
–  doms[8] = 4, doms[7] = 5

•  To compute Dom[b] walk through doms[b]
•  Need to efficiently compute intersections���

 of Dom[a] and Dom[b]
–  Traverse up tree, looking for least common ���

ancestor:
–  Dom[8] ∩Dom[7] = Dom[4]

•  See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy

CIS 341: Compilers 21

1

2

3

4

5

6

7

8

9

0

Completing Control-flow Analysis
•  Dominator analysis identifies back edges:

–  Edge n à h where h dominates n

•  Each back edge has a natural loop:
–  h is the header
–  All nodes reachable from h that also reach���

n without going through h

•  For each back edge n à h, find the natural loop:
–  {n’ | n is reachable from n’ in G – {h}} ∪ {h}

•  Two loops may share the same header: ���
merge them

•  Nesting structure of loops is determined by set inclusion
–  Can be used to build the control tree

CIS 341: Compilers 22

h

n

h

n

m

Example Natural Loops

CIS 341: Compilers 23

1

2

3

4

5

6

7

8

9

0

Control Tree:

The control tree ���
depicts the nesting���
structure of the ���
program.

Natural Loops

Uses of Control-flow Information
•  Loop nesting depth plays an important role in optimization heuristics.

–  Deeply nested loops pay off the most for optimization.

•  Need to know loop headers / back edges for doing
–  loop invariant code motion
–  loop unrolling

•  Dominance information also plays a role in converting to SSA form
–  Used internally by LLVM to do register allocation.

CIS 341: Compilers 24

REVISITING SSA

Zdancewic CIS 341: Compilers 25

Phi nodes
Alloc “promotion”
Register allocation

���

Single Static Assignment (SSA)
•  LLVM IR names (via %uids) all intermediate values computed by the

program.
•  It makes the order of evaluation explicit.
•  Each %uid is assigned to only once

–  Contrast with the mutable quadruple form
–  Note that dataflow analyses had these kill[n] sets because of updates to

variables…
•  Naïve implementation of backend: map %uids to stack slots
•  Better implementation: map %uids to registers (as much as possible)

•  Question: How do we convert a source program to make maximal use
of %uids, rather than alloca-created storage?
–  two problems: control flow & location in memory

•  Then: How do we convert SSA code to x86, mapping %uids to
registers?
–  Register allocation.

CIS 341: Compilers 26

Alloca vs. %UID
•  Current compilation strategy:

•  Directly map source variables into %uids?

•  Does this always work?

Zdancewic CIS 341: Compilers 27

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i32
%y = alloca i32
store i32* %x, 3
store i32* %y, 0
%x1 = load %i32* %x
%tmp1 = add i32 %x1, 1
store i32* %x, %tmp1
%x2 = load %i32* %x
%tmp2 = add i32 %x2, 2
store i32* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i32 3, 0
%y1 = add i32 0, 0
%x2 = add i32 %x1, 1
%y2 = add i32 %x2, 2

What about If-then-else?
•  How do we translate this into SSA?

•  What do we put for ???

CIS 341: Compilers 28

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i32 %y1, 1
 br label %merge
else:
 %x3 = mult i32 %y1, 2
merge:
 %z2 = %add i32 ???, 3

Phi Functions
•  Solution: φ functions

–  Fictitious operator, used only for analysis
•  implemented by Mov at x86 level

–  Chooses among different versions of a variable based on the path by
which control enters the phi node.���
%uid = phi <ty> v1, <label1>, … , vn, <labeln>

Zdancewic CIS 341: Compilers 29

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i32 %y1, 1
 br label %merge
else:
 %x3 = mult i32 %y1, 2
merge:
 %x4 = phi i32 %x2, %then, %x3, %else
 %z2 = %add i32 %x4, 3

Phi Nodes and Loops
•  Importantly, the %uids on the right-hand side of a phi node can be

defined “later” in the control-flow graph.
–  Means that %uids can hold values “around a loop”

–  Scope of %uids is defined by dominance (discussed soon)

Zdancewic CIS 341: Compilers 30

entry:
 %y1 = …
 %x1 = …
 br label %body

body:
 %x2 = phi i32 %x1, %entry, %x3, %body
 %x3 = add i32 %x2, %y1
 %p = icmp slt i32, %x3, 10
 br i1 %p, label %body, label %after

after:
 …

