
CIS 341: COMPILERS 
Lecture 22 



Announcements 
 

•  HW 6: Dataflow Analysis and Optimizations 
–  Available later today(?) 
–  Due Next Thursday, April 16 

•  HW 7: Optimization & Experiments 
–  Available next week 
–  Due: April 29th 
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QUALITY OF DATAFLOW 
ANALYSIS SOLUTIONS 
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Best Possible Solution 
•  Suppose we have a control-flow 

graph. 
•  If there is a path p1 starting from the 

root node (entry point of the 
function) traversing the nodes ���
n0, n1, n2, … nk 

•  The best possible information along 
the path p1 is:���
ℓp1 = Fnk(…Fn2(Fn1(Fn0(T)))…) 

•  Best solution at the output is some ���
ℓ ⊑ ℓp for all paths p. 

•  Meet-over-paths (MOP) solution:���

⨅p∈paths_to[n]ℓp 
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e = 1 

if x > 0 

e = y * 5 e = y * 3 

e = y * x 

1 

2 

3 4 

5 

Best answer here is: ���

F5(F3(F2(F1(T))))  ⨅  F5(F4(F2(F1(T))))     



What about quality of iterative solution? 

•  Does the iterative solution: out[n] = Fn(⨅n’∈pred[n]out[n’]) compute the 
MOP solution? 

•  MOP Solution:  ⨅p∈paths_to[n] ℓp 

•  Answer:  Yes, if the flow functions distribute over ⨅ 
–  Distributive means: ⨅i Fn(ℓi) = Fn(⨅i ℓi) 

–  Proof is a bit tricky & beyond the scope of this class.  (Difficulty: loops in 
the control flow graph might mean there are infinitely many paths…) 

•  Not all analyses give MOP solution 
–  They are more conservative. 
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Reaching Definitions is MOP 
•  Fn[x] = gen[n] ∪ (x - kill[n])    

•  Does Fn distribute over meet ⨅ =∪? 

•  Fn[x ⨅ y] ���
  =  gen[n] ∪ ((x ∪ y) - kill[n]) ���
  =  gen[n] ∪ ((x - kill[n]) ∪ (y - kill[n]))���
  =  (gen[n] ∪(x - kill[n])) ∪ (gen[n]∪(y - kill[n])���
  =  Fn[x] ∪ Fn[y]���

  =  Fn[x] ⨅ Fn[y] 

•  Therefore: Reaching Definitions with iterative analysis always 
terminates with the MOP (i.e. best) solution. 
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“Classic” Constant Propagation 
•  Constant propagation can be formulated as a dataflow analysis. 

•  Idea: propagate and fold integer constants in one pass:���
x = 1;    x = 1;���
y = 5 + x;   y = 6;���
z = y * y;   z = 36; 

•  Information about a single variable: 
–  Variable is never defined. 
–  Variable has a single, constant value. 
–  Variable is assigned multiple values. 
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Domains for Constant Propagation 
•  We can make a constant propagation lattice L for one variable like 

this: 

•  To accommodate multiple variables, we take the product lattice, with 
one element per variable. 
–  Assuming there are three variables, x, y, and z, the elements of the 

product lattice are of the form (ℓx, ℓy, ℓz). 
–  Alternatively, think of the product domain as a context that maps variable 

names to their “abstract interpretations” 

•  What are “meet” and “join” in this product lattice? 
•  What is the height of the product lattice? 
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⟙ = multiple values 

⟘ = never defined 

…, -3, -2, -1, 0, 1, 2, 3, … 



Flow Functions 
•  Consider the node x = y op z 
•  F(ℓx, ℓy, ℓz) = ? 

•  F(ℓx, ⟙, ℓz) = (⟙, ⟙, ℓz)  
•  F(ℓx, ℓy, ⟙) = (⟙, ℓy, ⟙) 

•  F(ℓx, ⟘, ℓz) = (⟘, ⟘, ℓz)  
•  F(ℓx, ℓy, ⟘) = (⟘, ℓy, ⟘) 

•  F(ℓx, i, j) = (i op j, i, j)                     
 
•  Flow functions for the other nodes are easy… 
•  Monotonic? 
•  Distributes over meets? 
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“If either input might have multiple values���
the result of the operation might too.” 

“If either input is undefined���
the result of the operation is too.” 

”If the inputs are known constants, ���
calculate the output statically.” 



Iterative Solution 
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z = 1 z = 2 

x = y + z 

y = 1 y = 2 

if x > 0 

(⟘, ⟘, ⟘)  

(⟘, ⟘, ⟘)  (⟘, ⟘, ⟘)  

(⟘, 2, ⟘)  

(⟘, 2, 1)  (⟘, 1, 2)  

(⟘, 1, ⟘)  

(⟘, 1, 2) ⨅ (⟘, 2, 1) = (⟘, ⟙, ⟙)   

(⟙, ⟙, ⟙)  iterative solution 



MOP Solution ≠ Iterative Solution 
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z = 1 z = 2 

x = y + z 

y = 1 y = 2 

if x > 0 

(⟘, ⟘, ⟘)  

(⟘, ⟘, ⟘)  (⟘, ⟘, ⟘)  

(⟘, 2, ⟘)  

(⟘, 2, 1)  (⟘, 1, 2)  

(⟘, 1, ⟘)  

(3, 1, 2) ⨅ (3, 2, 1) = (3, ⟙, ⟙)   MOP solution 



Why not compute MOP Solution? 
•  If MOP is better than the iterative analysis, why not compute it instead? 

–  ANS: exponentially many paths (even in graph without loops) 

•  O(n) nodes 
•  O(n) edges 
•  O(2n) paths* 

–  At each branch���
there is a choice���
of 2 directions 
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* Incidentally, a similar idea���
can be used to force ML / Haskell���
type inference to need to construct���
a type that is exponentially big���
in the size of the program! 



Dataflow Analysis: Summary 
•  Many dataflow analyses fit into a common framework. 
•  Key idea: Iterative solution of a system of equations over a lattice of 

constraints. 
–  Iteration terminates if flow functions are monotonic. 
–  Solution is equivalent to meet-over-paths answer if the flow functions 

distribute over meet (⨅). 

•  Dataflow analyses as presented work for an “imperative” intermediate 
representation. 
–  The values of temporary variables are updated (“mutated”) during 

evaluation. 
–  Such mutation complicates calculations 
–  SSA = “Single Static Assignment” eliminates this problem, by introducing 

more temporaries – each one assigned to only once. 
–  Next up: Converting to SSA, finding loops and dominators in CFGs 
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LOOPS AND DOMINATORS 
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Loops in Control-flow Graphs 
•  Taking into account loops is important for optimizations. 

–  The 90/10 rule applies, so optimizing loop bodies is important 

•  Should we apply loop optimizations at the AST level or at a lower 
representation? 
–  Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them. 

•  Loops may be hard to recognize at the quadruple / LLVM IR level. 
–  Many kinds of loops: while, do/while, for, continue, goto… 

•  Problem: How do we identify loops in the control-flow graph? 
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Definition of a Loop 
•  A loop is a set of nodes in the control flow graph. 

–  One distinguished entry point called the header 

•  Every node is reachable ���
from the header &���
the header is reachable ���
from every node. 
–  A loop is a strongly ���

connected component 

•  No edges enter the loop ���
except to the header 

•  Nodes with outgoing edges ���
are called loop exit nodes 
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header 

exit node 

loop 
nodes 



Nested Loops 
•  Control-flow graphs may contain many loops 
•  Loops may contain other loops: 

CIS 341: Compilers 17 

Control Tree: 

The control tree ���
depicts the nesting���
structure of the ���
program. 



Control-flow Analysis 
•  Goal: Identify the loops and nesting structure of the CFG. 

•  Control flow analysis is based on the idea of dominators: 
•  Node A dominates node B if the only way to reach B from the start 

node is through node A. 

•  An edge in the graph ���
is a back edge if the ���
target node dominates���
the source node. 

•  A loop contains at least���
one back edge.���
 

CIS 341: Compilers 18 

Back Edge 



Dominator Trees 
•  Domination is transitive:  

–  if A dominates B and B dominates C then A dominates C 

•  Domination is anti-symmetric:  
–  if A dominates B and B dominates A then A = B 

•  Every flow graph has a dominator tree 
–  The Hasse diagram of the dominates relation 
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Dominator Dataflow Analysis 
•  We can define Dom[n] as a forward dataflow analysis. 

–  Using the framework we saw earlier:  Dom[n] = out[n] where: 

•  “A node B is dominated by another node A if A dominates all of the 
predecessors of B.” 

–  in[n] := ∩n’∈pred[n]out[n’] 

•  “Every node dominates itself.” 
–  out[n] := in[n]  ∪ {n} 

•  Formally:  L = set of nodes ordered by ⊆ 
–  T = {all nodes} 
–  Fn(x) = x ∪ {n} 
–  ⨅  is ∩  

•  Easy to show monotonicity and that Fn distributes over meet. 
–  So algorithm terminates and is MOP 
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Improving the Algorithm 
•  Dom[b] contains just those nodes along the path in the dominator tree 

from the root to b: 
–  e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7} 
–  There is a lot of sharing among the nodes 

•  More efficient way to represent Dom sets is���
to store the dominator tree. 
–  doms[b] = immediate dominator of b 
–  doms[8] = 4, doms[7] = 5 

•  To compute Dom[b] walk through doms[b] 
•  Need to efficiently compute intersections���

 of Dom[a] and Dom[b] 
–  Traverse up tree, looking for least common ���

ancestor: 
–  Dom[8] ∩Dom[7] = Dom[4] 

 
•  See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy 
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Completing Control-flow Analysis 
•  Dominator analysis identifies back edges: 

–  Edge n à h where h dominates n 

•  Each back edge has a natural loop: 
–  h is the header 
–  All nodes reachable from h that also reach���

n without going through h 

•  For each back edge n à h, find the natural loop: 
–  {n’ | n is reachable from n’ in G – {h}} ∪ {h} 

•  Two loops may share the same header: ���
merge them 

•  Nesting structure of loops is determined by set inclusion 
–  Can be used to build the control tree  
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Example Natural Loops 

CIS 341: Compilers 23 

 
 
1
 
 
 
 
2
 
 

 
 
3
 
 

 
 
4
 
 

 
 
5
 
 

 
 
6
 
 

 
 
7
 
 

 
 
8
 
 

 
 
9
 
 

 
0

Control Tree: 

The control tree ���
depicts the nesting���
structure of the ���
program. 

Natural Loops 



Uses of Control-flow Information 
•  Loop nesting depth plays an important role in optimization heuristics. 

–  Deeply nested loops pay off the most for optimization. 

•  Need to know loop headers / back edges for doing 
–  loop invariant code motion 
–  loop unrolling 

•  Dominance information also plays a role in converting to SSA form 
–  Used internally by LLVM to do register allocation. 
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REVISITING SSA 
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Phi nodes 
Alloc “promotion” 
Register allocation 
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Single Static Assignment (SSA) 
•  LLVM IR names (via %uids) all intermediate values computed by the 

program. 
•  It makes the order of evaluation explicit. 
•  Each %uid is assigned to only once 

–  Contrast with the mutable quadruple form 
–  Note that dataflow analyses had these kill[n] sets because of updates to 

variables… 
•  Naïve implementation of backend: map %uids to stack slots 
•  Better implementation: map %uids to registers (as much as possible) 

•  Question: How do we convert a source program to make maximal use 
of %uids, rather than alloca-created storage? 
–  two problems: control flow & location in memory 

•  Then: How do we convert SSA code to x86, mapping %uids to 
registers? 
–  Register allocation. 
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Alloca vs. %UID 
•  Current compilation strategy: 

•  Directly map source variables into %uids? 

•  Does this always work? 
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int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i32
%y = alloca i32
store i32* %x, 3
store i32* %y, 0
%x1 = load %i32* %x
%tmp1 = add i32 %x1, 1
store i32* %x, %tmp1
%x2 = load %i32* %x
%tmp2 = add i32 %x2, 2 
store i32* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i32 3, 0
%y1 = add i32 0, 0
%x2 = add i32 %x1, 1
%y2 = add i32 %x2, 2



What about If-then-else? 
•  How do we translate this into SSA? 

•  What do we put for ???
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int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i32 %y1, 1
  br label %merge
else:
  %x3 = mult i32 %y1, 2
merge:
  %z2 = %add i32 ???, 3



Phi Functions 
•  Solution: φ functions  

–  Fictitious operator, used only for analysis  
•  implemented by Mov at x86 level 

–  Chooses among different versions of a variable based on the path by 
which control enters the phi node.���
%uid = phi <ty>  v1, <label1>, … , vn, <labeln>
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int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i32 %y1, 1
  br label %merge
else:
  %x3 = mult i32 %y1, 2
merge:
  %x4 = phi i32 %x2, %then, %x3, %else
  %z2 = %add i32 %x4, 3



Phi Nodes and Loops 
•  Importantly, the %uids on the right-hand side of a phi node can be 

defined “later” in the control-flow graph. 
–  Means that %uids can hold values “around a loop” 

–  Scope of %uids is defined by dominance (discussed soon) 
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entry:
  %y1 = …
  %x1 = …
  br label %body

body:
  %x2 = phi i32 %x1, %entry, %x3, %body
  %x3 = add i32 %x2, %y1
  %p = icmp slt i32, %x3, 10
  br i1 %p, label %body, label %after

after:
  …  


