
CIS 341: COMPILERS
Lecture 23

Announcements

•  HW 6: Dataflow Analysis and Optimizations
–  Due: Monday , April 20

•  HW 7: Optimization & Experiments
–  Due: April 29th

•  My Office Hours TODAY: 1:30 – 3:00

Zdancewic CIS 341: Compilers 2

REVISITING SSA

Zdancewic CIS 341: Compilers 3

Phi nodes
Alloc “promotion”
Register allocation

���

Single Static Assignment (SSA)
•  LLVM IR names (via %uids) all intermediate values computed by the

program.
•  It makes the order of evaluation explicit.
•  Each %uid is assigned to only once

–  Contrast with the mutable quadruple form
–  Note that dataflow analyses had these kill[n] sets because of updates to

variables…
•  Naïve implementation of backend: map %uids to stack slots
•  Better implementation: map %uids to registers (as much as possible)

•  Question: How do we convert a source program to make maximal use
of %uids, rather than alloca-created storage?
–  two problems: control flow & location in memory

•  Then: How do we convert SSA code to x86, mapping %uids to
registers?
–  Register allocation.

CIS 341: Compilers 4

Alloca vs. %UID
•  Current compilation strategy:

•  Directly map source variables into %uids?

•  Does this always work?

Zdancewic CIS 341: Compilers 5

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i32
%y = alloca i32
store i32* %x, 3
store i32* %y, 0
%x1 = load %i32* %x
%tmp1 = add i32 %x1, 1
store i32* %x, %tmp1
%x2 = load %i32* %x
%tmp2 = add i32 %x2, 2
store i32* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i32 3, 0
%y1 = add i32 0, 0
%x2 = add i32 %x1, 1
%y2 = add i32 %x2, 2

What about If-then-else?
•  How do we translate this into SSA?

•  What do we put for ???

CIS 341: Compilers 6

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i32 %y1, 1
 br label %merge
else:
 %x3 = mult i32 %y1, 2
merge:
 %z2 = %add i32 ???, 3

Phi Functions
•  Solution: φ functions

–  Fictitious operator, used only for analysis
•  implemented by Mov at x86 level

–  Chooses among different versions of a variable based on the path by
which control enters the phi node.���
%uid = phi <ty> v1, <label1>, … , vn, <labeln>

Zdancewic CIS 341: Compilers 7

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i32 %y1, 1
 br label %merge
else:
 %x3 = mult i32 %y1, 2
merge:
 %x4 = phi i32 %x2, %then, %x3, %else
 %z2 = %add i32 %x4, 3

Phi Nodes and Loops
•  Importantly, the %uids on the right-hand side of a phi node can be

defined “later” in the control-flow graph.
–  Means that %uids can hold values “around a loop”

–  Scope of %uids is defined by dominance (discussed soon)

Zdancewic CIS 341: Compilers 8

entry:
 %y1 = …
 %x1 = …
 br label %body

body:
 %x2 = phi i32 %x1, %entry, %x3, %body
 %x3 = add i32 %x2, %y1
 %p = icmp slt i32, %x3, 10
 br i1 %p, label %body, label %after

after:
 …

Alloca Promotion
•  Not all source variables can be allocated to registers

–  If the address of the variable is taken (as permitted in C, for example)
–  If the address of the variable “escapes” (by being passed to a function)

•  An alloca instruction is called promotable if neither of the two
conditions above holds

•  Happily, most local variables declared in source programs are
promotable
–  That means they can be register allocated

Zdancewic CIS 341: Compilers 9

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call malloc(i64 8)
 %ptr = bitcast i8* %y to i64**
 store i65** %ptr, %x // store the pointer into the heap

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call foo(i64* %x) // foo may store the pointer into the heap

Converting to SSA: Overview
•  Start with the ordinary control flow graph that uses allocas

–  Identify “promotable” allocas

•  Compute dominator tree information
•  Calculate def/use information for each such allocated variable
•  Insert φ functions for each variable at necessary “join points”

•  Replace loads/stores to alloc’ed variables with freshly-generated
%uids

•  Eliminate the now unneeded load/store/alloca instructions.

CIS 341: Compilers 10

Where to Place φ functions?
•  Need to calculate the “Dominance Frontier”

•  Node A strictly dominates node B if A dominates B and A ≠ B.
–  Note: A does not strictly dominate B if A does not dominate B or A = B.

•  The dominance frontier of a node B is the set of all CFG nodes y such
that B dominates a predecessor of y but does not strictly dominate y
–  Intuitively: starting at B, there is a path to y, but there is another route to y

that does not go through B

•  Write DF[n] for the dominance frontier of node n.

CIS 341: Compilers 11

Dominance Frontiers
•  Example of a dominance frontier calculation results
•  DF[1] = {1}, DF[2] = {1,2}, DF[3] = {2}, DF[4] = {1}, DF[5] = {8,0},���

DF[6] = {8}, DF[7] = {7,0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {}

CIS 341: Compilers 12

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

Control-flow Graph Dominator Tree

Algorithm For Computing DF[n]
•  Assume that doms[n] stores the dominator tree (so that ���

doms[n] is the immediate dominator of n in the tree)

•  Adds each B to the DF sets to which it belongs

for all nodes B
 if #(pred[B]) ≥ 2 // (just an optimization)
 for each p ∈pred[B] {
 runner := p // start at the predecessor of B
 while (runner ≠ doms[B]) // walk up the tree adding B
 DF[runner] := DF[runner] ∪ {B}���
 runner := doms[runner]

 }

CIS 341: Compilers 13

Insert φ at Join Points
•  Lift the DF[n] to a set of nodes N in the obvious way:���

DF[N] = ∪n∈NDF[n]
•  Suppose that at variable x is defined at a set of nodes N.
•  DF0[N] = DF[N]���

DFi+1[N] = DF[DFi[N] ∪ N]
•  Let J[N] be the least fixed point of the sequence:���

DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆…
–  That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N]

•  J[N] is called the “join points” for the set N
•  We insert φ functions for the variable x at each such join point.

–  x = φ(x, x, …, x); (one “x” argument for each predecessor of the node)
–  In practice, J[N] is never directly computed, instead you use a worklist

algorithm that keeps adding nodes for DFk[N] until there are no changes.

•  Intuition:
–  If N is the set of places where x is modified, then DF[N] is the places where

phi nodes need to be added, but those also “count” as modifications of x, so
we need to insert the phi nodes to capture those modifications too…

CIS 341: Compilers 14

Example Join-point Calculation
•  Suppose the variable x is modified at nodes 3 and 6

–  Where would we need to add phi nodes?

•  DF0[{3,6}] = DF[{3,6}] = DF[3] ∪ DF[6] = {2,8}
•  DF1[{3,6}] ���

 = DF[DF0{3,6} ∪ {3,6}] ���
 = DF[{2,3,6,8}] ���
 = DF[2] ∪ DF[3] ∪ DF[6] ∪ DF[8] ���
 = {1,2} ∪ {2} ∪ {8} ∪ {0} = {1,2,8,0}

•  DF2[{3,6}] ���
 = ... ���
 = {1,2,8,0}

•  So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four
spots.

Zdancewic CIS 341: Compilers 15

Example of Phi Placement Algorithm

•  How to place phi
nodes without
breaking SSA?

•  Note: the “real”
implementation
combines many of these
steps into one pass.
–  Places phis directly at the

dominance frontier

•  This example also
illustrates other common
optimizations:
–  Load after store/alloca
–  Dead store/alloca

elimination

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2:

 store 1, %p

 br %l3

l3:

 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  How to place phi
nodes without
breaking SSA?

•  Insert
–  Loads at the

end of each
block

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2:

 store 1, %p
 %x2 = load %p
 br %l3

l3:

 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  How to place phi
nodes without
breaking SSA?

•  Insert
–  Loads at the

end of each
block

–  Insert φ-nodes
at each block

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]

 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]

 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  How to place phi
nodes without
breaking SSA?

•  Insert
–  Loads at the

end of each
block

–  Insert φ-nodes
at each block

–  Insert stores
after φ-nodes

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  For loads after
stores (LAS):
–  Substitute all

uses of the load
by the value
being stored

–  Remove the load

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x4

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  Dead Store
Elimination (DSE)
–  Eliminate all

stores with no
subsequent
loads.

•  Dead Alloca
Elimination (DAE)
–  Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p

 ret %x4

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

•  Dead Store
Elimination (DSE)
–  Eliminate all

stores with no
subsequent
loads.

•  Dead Alloca
Elimination (DAE)
–  Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p

 ret %x4

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

Example of Phi Placement Algorithm

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

•  Eliminate φ	 nodes:
–  Singletons
–  With identical

values from
each
predecessor

–  See Aycock &
Horspool, 2002

Example of Phi Placement Algorithm

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max	 φs

LAS/
LAA

DSE

DAE

elim	 φs

Find	
alloca

•  Eliminate φ	 nodes:
–  Singletons
–  With identical

values from
each
predecessor

Example of Phi Placement Algorithm

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2:

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max	 φs

LAS/
LAA

DSE

DAE

elim	 φ

Find	
alloca

•  Done!

OPTIMIZATIONS IN LLVM

Zdancewic CIS 341: Compilers 32

See lec23.zip Makefile for how to get a trace of LLVM’s optimization
passes

LLVM Phi Placement
•  This transformation is also sometimes called register promotion

–  older versions of LLVM called this “mem2reg” memory to register
promotion

•  In practice, LLVM combines this transformation with scalar
replacement of aggregates (SROA)
–  i.e. transforming loads/stores of structured data into loads/stores on

register-sized data

•  These algorithms are (one reason) why LLVM IR allows annotation of
predecessor information in the .ll files
–  Simplifies computing the DF

Zdancewic CIS 341: Compilers 33

REGISTER ALLOCATION

Zdancewic CIS 341: Compilers 34

Registers
���

Register Allocation
•  Once we have the program in SSA form we can do register allocation.

•  Basic process:
1.  Compute liveness information for each temporary.
2.  Create an interference graph:

–  Nodes are temporary variables.
–  There is an edge between node n and m if n is live at the same time as m

3.  Try to color the graph
–  Each color corresponds to a register

4.  In case step 3. fails, “spill” a register to the stack and repeat the
whole process.

5.  Rewrite the program to use registers

CIS 341: Compilers 35

Interference Graphs
•  Nodes of the graph are %uids
•  Edges connect variables that interfere with each other

–  Two variables interfere if their live ranges intersect (i.e. there is an edge in
the control-flow graph across which they are both live).

•  Register assignment is a graph coloring.
–  A graph coloring assigns each node in the graph a color (register)
–  Any two nodes connected by an edge must have different colors.

•  Example:
���

CIS 341: Compilers 36

���
%b1 = add i32 %a, 2  
 
%c = mult i32 %b1, %b1  
 
%b2 = add i32 %c, 1  
 
%ans = mult i32 %b2, %a
 
return %ans;

// live = {%a}���
%b1 = add i32 %a, 2  
// live = {%a,%b1}  
%c = mult i32 %b1, %b1  
// live = {%a,%c} 
%b2 = add i32 %c, 1  
// live = {%a,%b2} 
%ans = mult i32 %b2, %a
// live = {%ans} 
return %ans;

Interference Graph

%a

%b1 %b2 %c

%ans

2-Coloring of the graph���
red = EAX
yellow = EBX

%a

%b1 %b2 %c

%ans

Register Allocation Questions
•  Can we efficiently find a k-coloring of the graph whenever possible?

–  Answer: in general the problem is NP-complete (it requires search)
–  But, we can do an efficient approximation using heuristics.

•  How do we assign registers to colors?
–  If we do this in a smart way, we can eliminate redundant MOV

instructions.

•  What do we do when there aren’t enough colors/registers?
–  We have to use stack space, but how do we do this effectively?

CIS 341: Compilers 37

Coloring a Graph: Kempe’s Algorithm
•  Kempe [1879] provides this algorithm for K-coloring a graph.
•  It’s a recursive algorithm that works in three steps:
•  Step 1: Find a node with degree < K and cut it out of the graph.

–  Remove the nodes and edges.
–  This is called simplifying the graph

•  Step 2: Recursively K-color the remaining subgraph
•  Step 3: When remaining graph is colored, there must be at least one

free color available for the deleted node (since its degree was < K).
Pick such a color.

CIS 341: Compilers 38

Example: 3-color this Graph

CIS 341: Compilers 39

Recursing Down the Simplified Graphs

Example: 3-color this Graph

CIS 341: Compilers 40

Assigning Colors on the way back up.

Failure of the Algorithm
•  If the graph cannot be colored, it will simplify to a graph where every

node has at least K neighbors.
–  This can happen even when the graph is K-colorable!
–  This is a symptom of NP-hardness (it requires search)

•  Example: When trying to 3-color this graph:

CIS 341: Compilers 41

?

Spilling
•  Idea: If we can’t K-color the graph, we need to store one temporary

variable on the stack.
•  Which variable to spill?

–  Pick one that isn’t used very frequently
–  Pick one that isn’t used in a (deeply nested) loop
–  Pick one that has high interference (since removing it will make the graph

easier to color)

•  In practice: some weighted combination of these criteria

•  When coloring:
–  Mark the node as spilled
–  Remove it from the graph
–  Keep recursively coloring

CIS 341: Compilers 42

Spilling, Pictorially
•  Select a node to spill
•  Mark it and remove it from the graph
•  Continue coloring

CIS 341: Compilers 43

X

Optimistic Coloring
•  Sometimes it is possible to color a node marked for spilling.

–  If we get “lucky” with the choices of colors made earlier.

•  Example: When 2-coloring this graph:

•  Even though the node was marked for spilling, we can color it.
•  So: on the way down, mark for spilling, but don’t actually spill…

CIS 341: Compilers 44

X

…
X

Accessing Spilled Registers
•  If optimistic coloring fails, we need to generate code to move the

spilled temporary to & from memory.
•  Option 1: Reserve registers specifically for moving to/from memory.

–  Con: Need at least two registers (one for each source operand of an
instruction), so decreases total # of available registers by 2.

–  Pro: Only need to color the graph once.
–  Not good on X86 (especially 32bit) because there are too few registers &

too many constraints on how they can be used.

•  Option 2: Rewrite the program to use a new temporary variable, with
explicit moves to/from memory.
–  Pro: Need to reserve fewer registers.
–  Con: Introducing temporaries changes live ranges, so must recompute

liveness & recolor graph
–  This strategy is usually used on X86.

CIS 341: Compilers 45

Example Spill Code
•  Suppose temporary t is marked for spilling to stack slot ���

[rbp+offs]

•  Rewrite the program like this:���
t = a op b; t = a op b // defn. of t 
… Mov [rbp+offs], t  

…  
x = t op c Mov t37, [rbp+offs] // use 1 of t 
… x = t37 op c  

 …  
y = d op t Mov t38, [rbp+offs] // use 2 of t 

y = d op t38

•  Here, t37 and t38 are freshly generated temporaries that
replace t for different uses of t.

•  Rewriting the code in this way breaks t’s live range up:
 t, t37, t38 are only live across one edge

CIS 341: Compilers 46

Precolored Nodes
•  Some variables must be pre-assigned to registers.

–  E.g. on X86 the multiplication instruction: IMul must define %rax
–  The “Call” instruction should kill the caller-save registers %rax, %rcx,

%rdx.
–  Any temporary variable live across a call interferes with the caller-save

registers.

•  To properly allocate temporaries, we treat registers as nodes in the
interference graph with pre-assigned colors.
–  Pre-colored nodes can’t be removed during simplification.
–  Trick: Treat pre-colored nodes as having “infinite” degree in the

interference graph – this guarantees they won’t be simplified.
–  When the graph is empty except the pre-colored nodes, we have reached

the point where we start coloring the rest of the nodes.

CIS 341: Compilers 47

Picking Good Colors
•  When choosing colors during the coloring phase, any choice is

semantically correct, but some choices are better for performance.
•  Example:���

movq t1, t2
–  If t1 and t2 can be assigned the same register (color) then this move is

redundant and can be eliminated.

•  A simple color choosing strategy that helps eliminate such moves:
–  Add a new kind of “move related” edge between the nodes for t1 and t2

in the interference graph.
–  When choosing a color for t1 (or t2), if possible pick a color of an already

colored node reachable by a move-related edge.

CIS 341: Compilers 48

Example Color Choice
•  Consider 3-coloring this graph, where the dashed edge indicates that

there is a Mov from one temporary to another.

•  After coloring the rest, we have a choice:
–  Picking yellow is better than red because it will eliminate a move.

CIS 341: Compilers 49

Move
related
edge

?

Coalescing Interference Graphs
•  A more aggressive strategy is to coalesce nodes of the interference

graph if they are connected by move-related edges.
–  Coalescing the nodes forces the two temporaries to be assigned the same

register.

•  Idea: interleave simplification and coalescing to maximize the
number of moves that can be eliminated.

•  Problem: coalescing can sometimes increase the degree of a
node.

CIS 341: Compilers 50

t

u t,u

a b

c

a b

c

Conservative Coalescing
•  Two strategies are guaranteed to preserve the k-colorability of the

interference graph.

•  Brigg’s strategy: It's safe to coalesce x & y if the resulting node will
have fewer than k neighbors (with degree ≥ k).

•  George’s strategy: We can safely coalesce x & y if for every neighbor t
of x, either t already interferes with y or t has degree < k.

CIS 341: Compilers 51

Complete Register Allocation Algorithm
1.  Build interference graph (precolor nodes as necessary).

–  Add move related edges
2.  Reduce the graph (building a stack of nodes to color).

1.  Simplify the graph as much as possible without removing nodes that are
move related (i.e. have a move-related neighbor). Remaining nodes are
high degree or move-related.

2.  Coalesce move-related nodes using Brigg’s or George’s strategy.
3.  Coalescing can reveal more nodes that can be simplified, so repeat 2.1

and 2.2 until no node can be simplified or coalesced.
4.  If no nodes can be coalesced freeze (remove) a move-related edge and

keep trying to simplify/coalesce.
3.  If there are non-precolored nodes left, mark one for spilling, remove

it from the graph and continue doing step 2.
4.  When only pre-colored node remain, start coloring (popping

simplified nodes off the top of the stack).
1.  If a node must be spilled, insert spill code as on slide 14 and rerun the

whole register allocation algorithm starting at step 1.

CIS 341: Compilers 52

Last details
•  After register allocation, the compiler should do a peephole

optimization pass to remove redundant moves.
•  Some architectures specify calling conventions that use registers to

pass function arguments.
–  It’s helpful to move such arguments into temporaries in the function

prelude so that the compiler has as much freedom as possible during
register allocation. (Not an issue on X86, though.)

CIS 341: Compilers 53

