
CIS 341: COMPILERS 
Lecture 23 



Announcements 
 

•  HW 6: Dataflow Analysis and Optimizations 
–  Due: Monday , April 20 

•  HW 7: Optimization & Experiments 
–  Due: April 29th 

•  My Office Hours TODAY:   1:30 – 3:00 
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REVISITING SSA 
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Phi nodes 
Alloc “promotion” 
Register allocation 
 
���
 
 



Single Static Assignment (SSA) 
•  LLVM IR names (via %uids) all intermediate values computed by the 

program. 
•  It makes the order of evaluation explicit. 
•  Each %uid is assigned to only once 

–  Contrast with the mutable quadruple form 
–  Note that dataflow analyses had these kill[n] sets because of updates to 

variables… 
•  Naïve implementation of backend: map %uids to stack slots 
•  Better implementation: map %uids to registers (as much as possible) 

•  Question: How do we convert a source program to make maximal use 
of %uids, rather than alloca-created storage? 
–  two problems: control flow & location in memory 

•  Then: How do we convert SSA code to x86, mapping %uids to 
registers? 
–  Register allocation. 

CIS 341: Compilers 4 



Alloca vs. %UID 
•  Current compilation strategy: 

•  Directly map source variables into %uids? 

•  Does this always work? 
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int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i32
%y = alloca i32
store i32* %x, 3
store i32* %y, 0
%x1 = load %i32* %x
%tmp1 = add i32 %x1, 1
store i32* %x, %tmp1
%x2 = load %i32* %x
%tmp2 = add i32 %x2, 2 
store i32* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i32 3, 0
%y1 = add i32 0, 0
%x2 = add i32 %x1, 1
%y2 = add i32 %x2, 2



What about If-then-else? 
•  How do we translate this into SSA? 

•  What do we put for ???
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int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i32 %y1, 1
  br label %merge
else:
  %x3 = mult i32 %y1, 2
merge:
  %z2 = %add i32 ???, 3



Phi Functions 
•  Solution: φ functions  

–  Fictitious operator, used only for analysis  
•  implemented by Mov at x86 level 

–  Chooses among different versions of a variable based on the path by 
which control enters the phi node.���
%uid = phi <ty>  v1, <label1>, … , vn, <labeln>
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int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i32 %y1, 1
  br label %merge
else:
  %x3 = mult i32 %y1, 2
merge:
  %x4 = phi i32 %x2, %then, %x3, %else
  %z2 = %add i32 %x4, 3



Phi Nodes and Loops 
•  Importantly, the %uids on the right-hand side of a phi node can be 

defined “later” in the control-flow graph. 
–  Means that %uids can hold values “around a loop” 

–  Scope of %uids is defined by dominance (discussed soon) 
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entry:
  %y1 = …
  %x1 = …
  br label %body

body:
  %x2 = phi i32 %x1, %entry, %x3, %body
  %x3 = add i32 %x2, %y1
  %p = icmp slt i32, %x3, 10
  br i1 %p, label %body, label %after

after:
  …  



Alloca Promotion 
•  Not all source variables can be allocated to registers 

–  If the address of the variable is taken (as permitted in C, for example) 
–  If the address of the variable “escapes” (by being passed to a function) 

•  An alloca instruction is called promotable if neither of the two 
conditions above holds 

•  Happily, most local variables declared in source programs are 
promotable 
–  That means they can be register allocated 
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entry:
  %x = alloca i64          // %x cannot be promoted
  %y = call malloc(i64 8)
  %ptr = bitcast i8* %y to i64**
  store i65** %ptr, %x     // store the pointer into the heap

entry:
  %x = alloca i64        // %x cannot be promoted
  %y = call foo(i64* %x) // foo may store the pointer into the heap



Converting to SSA: Overview 
•  Start with the ordinary control flow graph that uses allocas 

–  Identify “promotable” allocas 

•  Compute dominator tree information 
•  Calculate def/use information for each such allocated variable 
•  Insert φ functions for each variable at necessary “join points” 

•  Replace loads/stores to alloc’ed variables with freshly-generated 
%uids 

•  Eliminate the now unneeded load/store/alloca instructions. 
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Where to Place φ functions?  
•  Need to calculate the “Dominance Frontier” 

•  Node A strictly dominates node B if A dominates B and A ≠ B. 
–  Note: A does not strictly dominate B if A does not dominate B or A = B. 

•  The dominance frontier of a node B is the set of all CFG nodes y such 
that B dominates a predecessor of y but does not strictly dominate y 
–  Intuitively: starting at B, there is a path to y, but there is another route to y 

that does not go through B 

•  Write DF[n] for the dominance frontier of node n. 
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Dominance Frontiers 
•  Example of a dominance frontier calculation results 
•  DF[1] = {1},   DF[2] = {1,2},   DF[3] = {2},  DF[4] = {1}, DF[5] = {8,0},���

DF[6] = {8},  DF[7] = {7,0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {} 
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Algorithm For Computing DF[n] 
•  Assume that doms[n] stores the dominator tree (so that ���

doms[n] is the immediate dominator of n in the tree) 

•  Adds each B to the DF sets to which it belongs 

for all nodes B  
 if #(pred[B]) ≥ 2                       // (just an optimization) 
  for each p ∈pred[B] { 
   runner := p                          // start at the predecessor of B 
   while (runner ≠ doms[B])  // walk up the tree adding B 
    DF[runner] := DF[runner] ∪ {B}���
         runner := doms[runner] 

     } 
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Insert φ at Join Points 
•  Lift the DF[n] to a set of nodes N in the obvious way:���

DF[N] = ∪n∈NDF[n] 
•  Suppose that at variable x is defined at a set of nodes N. 
•  DF0[N] = DF[N]���

DFi+1[N] = DF[DFi[N] ∪ N] 
•  Let J[N] be the least fixed point of the sequence:���

DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆… 
–  That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N] 

•  J[N] is called the “join points” for the set N 
•  We insert φ functions for the variable x at each such join point. 

–  x  = φ(x, x, …, x);   (one “x” argument for each predecessor of the node) 
–  In practice, J[N] is never directly computed, instead you use a worklist 

algorithm that keeps adding nodes for  DFk[N] until there are no changes. 

•  Intuition:   
–  If N is the set of places where x is modified, then DF[N] is the places where 

phi nodes need to be added, but those also “count” as modifications of x, so 
we need to insert the phi nodes to capture those modifications too… 
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Example Join-point Calculation 
•  Suppose the variable x is modified at nodes 3 and 6 

–  Where would we need to add phi nodes? 

•  DF0[{3,6}] = DF[{3,6}] = DF[3] ∪ DF[6] = {2,8} 
•  DF1[{3,6}] ���

  =  DF[DF0{3,6} ∪ {3,6}] ���
  =  DF[{2,3,6,8}] ���
  =  DF[2] ∪ DF[3] ∪ DF[6] ∪ DF[8] ���
  =  {1,2} ∪ {2} ∪ {8} ∪ {0} = {1,2,8,0} 

•  DF2[{3,6}] ���
  =  ... ���
  =  {1,2,8,0}  

•  So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four 
spots. 
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Example of Phi Placement Algorithm 

•  How to place phi 
nodes without 
breaking SSA? 

•  Note: the “real” 
implementation 
combines many of these 
steps into one pass. 
–  Places phis directly at the 

dominance frontier 

•  This example also 
illustrates other common 
optimizations: 
–  Load after store/alloca 
–  Dead store/alloca 

elimination 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: 
    
    store 1, %p
    
    br %l3      

l3: 
    
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  How to place phi 
nodes without 
breaking SSA? 

•  Insert 
–  Loads at the 

end of each 
block 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: 
    
    store 1, %p
    %x2 = load %p
    br %l3      

l3: 
    
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  How to place phi 
nodes without 
breaking SSA? 

•  Insert 
–  Loads at the 

end of each 
block 

–  Insert φ-nodes 
at each block 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  How to place phi 
nodes without 
breaking SSA? 

•  Insert 
–  Loads at the 

end of each 
block 

–  Insert φ-nodes 
at each block 

–  Insert stores 
after φ-nodes  

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  For loads after 
stores (LAS): 
–  Substitute all 

uses of the load 
by the value 
being stored 

–  Remove the load 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x4     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  Dead Store 
Elimination (DSE) 
–  Eliminate all 

stores with no 
subsequent 
loads. 

•  Dead Alloca 
Elimination (DAE) 
–  Eliminate all 

allocas with no 
subsequent 
loads/stores. 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    
    ret %x4     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

•  Dead Store 
Elimination (DSE) 
–  Eliminate all 

stores with no 
subsequent 
loads. 

•  Dead Alloca 
Elimination (DAE) 
–  Eliminate all 

allocas with no 
subsequent 
loads/stores. 

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    
    ret %x4     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 



Example of Phi Placement Algorithm 

l1: 
    
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 

•  Eliminate φ	  nodes: 
–  Singletons 
–  With identical 

values from 
each 
predecessor 

–  See Aycock & 
Horspool, 2002 



Example of Phi Placement Algorithm 

l1: 
    
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φs 

Find	  
alloca 

•  Eliminate φ	  nodes: 
–  Singletons 
–  With identical 

values from 
each 
predecessor 



Example of Phi Placement Algorithm 

l1: 
    
    %b = %y > 0

 
    br %b, %l2, %l3      

l2: 
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max	  φs 

LAS/
LAA 

DSE 

DAE 

elim	  φ 

Find	  
alloca 

•  Done! 



OPTIMIZATIONS IN LLVM 
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See lec23.zip Makefile for how to get a trace of LLVM’s optimization 
passes 
 



LLVM Phi Placement  
•  This transformation is also sometimes called register promotion 

–  older versions of LLVM called this “mem2reg” memory to register 
promotion 

•  In practice, LLVM combines this transformation with scalar 
replacement of aggregates (SROA) 
–  i.e. transforming loads/stores of structured data into loads/stores on 

register-sized data 

•  These algorithms are (one reason) why LLVM IR allows annotation of 
predecessor information in the .ll files 
–  Simplifies computing the DF 
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REGISTER ALLOCATION 
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Registers 
���
 
 



Register Allocation 
•  Once we have the program in SSA form we can do register allocation. 

•  Basic process: 
1.  Compute liveness information for each temporary. 
2.  Create an interference graph: 

–  Nodes are temporary variables. 
–  There is an edge between node n and m if n is live at the same time as m 

3.  Try to color the graph 
–  Each color corresponds to a register 

4.  In case step 3. fails, “spill” a register to the stack and repeat the 
whole process. 

5.  Rewrite the program to use registers 
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Interference Graphs 
•  Nodes of the graph are %uids
•  Edges connect variables that interfere with each other 

–  Two variables interfere if their live ranges intersect (i.e. there is an edge in 
the control-flow graph across which they are both live). 

•  Register assignment is a graph coloring. 
–  A graph coloring assigns each node in the graph a color (register) 
–  Any two nodes connected by an edge must have different colors. 

•  Example: 
���
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���
%b1 = add i32 %a, 2  
 
%c = mult i32 %b1, %b1  
 
%b2 = add i32 %c, 1  
 
%ans = mult i32 %b2, %a
 
return %ans;

// live = {%a}���
%b1 = add i32 %a, 2  
// live = {%a,%b1}  
%c = mult i32 %b1, %b1  
// live = {%a,%c} 
%b2 = add i32 %c, 1  
// live = {%a,%b2} 
%ans = mult i32 %b2, %a
// live = {%ans} 
return %ans;
 

Interference Graph 

%a

%b1 %b2 %c

%ans

2-Coloring of the graph���
red = EAX 
yellow = EBX 

%a

%b1 %b2 %c

%ans



Register Allocation Questions 
•  Can we efficiently find a k-coloring of the graph whenever possible? 

–  Answer: in general the problem is NP-complete (it requires search) 
–  But, we can do an efficient approximation using heuristics. 

•  How do we assign registers to colors? 
–  If we do this in a smart way, we can eliminate redundant MOV 

instructions. 
 

•  What do we do when there aren’t enough colors/registers? 
–  We have to use stack space, but how do we do this effectively? 
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Coloring a Graph: Kempe’s Algorithm 
•  Kempe [1879] provides this algorithm for K-coloring a graph. 
•  It’s a recursive algorithm that works in three steps: 
•  Step 1:  Find a node with degree < K and cut it out of the graph. 

–  Remove the nodes and edges. 
–  This is called simplifying the graph 

•  Step 2: Recursively K-color the remaining subgraph 
•  Step 3: When remaining graph is colored, there must be at least one 

free color available for the deleted node (since its degree was < K).  
Pick such a color. 
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Example: 3-color this Graph 
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Recursing Down the Simplified Graphs 



Example: 3-color this Graph 
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Assigning Colors on the way back up. 



Failure of the Algorithm 
•  If the graph cannot be colored, it will simplify to a graph where every 

node has at least K neighbors. 
–  This can happen even when the graph is K-colorable! 
–  This is a symptom of NP-hardness (it requires search) 

•  Example: When trying to 3-color this graph: 
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Spilling 
•  Idea: If we can’t K-color the graph, we need to store one temporary 

variable on the stack. 
•  Which variable to spill? 

–  Pick one that isn’t used very frequently 
–  Pick one that isn’t used in a (deeply nested) loop 
–  Pick one that has high interference (since removing it will make the graph 

easier to color) 

•  In practice: some weighted combination of these criteria 

•  When coloring:  
–  Mark the node as spilled 
–  Remove it from the graph 
–  Keep recursively coloring 
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Spilling, Pictorially 
•  Select a node to spill 
•  Mark it and remove it from the graph 
•  Continue coloring 
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Optimistic Coloring 
•  Sometimes it is possible to color a node marked for spilling. 

–  If we get “lucky” with the choices of colors made earlier. 

•  Example:  When 2-coloring this graph: 

•  Even though the node was marked for spilling, we can color it. 
•  So: on the way down, mark for spilling, but don’t actually spill… 
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Accessing Spilled Registers 
•  If optimistic coloring fails, we need to generate code to move the 

spilled temporary to & from memory. 
•  Option 1: Reserve registers specifically for moving to/from memory. 

–  Con: Need at least two registers (one for each source operand of an 
instruction), so decreases total # of available registers by 2.   

–  Pro: Only need to color the graph once. 
–  Not good on X86 (especially 32bit) because there are too few registers & 

too many constraints on how they can be used. 

•  Option 2: Rewrite the program to use a new temporary variable, with 
explicit moves to/from memory. 
–  Pro: Need to reserve fewer registers. 
–  Con: Introducing temporaries changes live ranges, so must recompute 

liveness & recolor graph 
–  This strategy is usually used on X86. 
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Example Spill Code 
•  Suppose temporary t is marked for spilling to stack slot ���

[rbp+offs]

•  Rewrite the program like this:���
t = a op b; t = a op b // defn. of t 
… Mov [rbp+offs], t  

…  
x = t op c Mov t37, [rbp+offs] // use 1 of t 
… x = t37 op c  

   …  
y = d op t Mov t38, [rbp+offs] // use  2 of t 

y = d op t38

•  Here, t37 and t38 are freshly generated temporaries that 
replace t for different uses of t. 

•  Rewriting the code in this way breaks t’s live range up: 
    t, t37, t38 are only live across one edge 
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Precolored Nodes 
•  Some variables must be pre-assigned to registers. 

–  E.g. on X86 the multiplication instruction: IMul must define %rax 
–  The “Call” instruction should kill the caller-save registers %rax, %rcx, 

%rdx.   
–  Any temporary variable live across a call interferes with the caller-save 

registers. 

•  To properly allocate temporaries, we treat registers as nodes in the 
interference graph with pre-assigned colors. 
–  Pre-colored nodes can’t be removed during simplification. 
–  Trick: Treat pre-colored nodes as having “infinite” degree in the 

interference graph – this guarantees they won’t be simplified. 
–  When the graph is empty except the pre-colored nodes, we have reached 

the point where we start coloring the rest of the nodes. 
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Picking Good Colors 
•  When choosing colors during the coloring phase, any choice is 

semantically correct, but some choices are better for performance. 
•  Example:���

movq t1, t2
–  If t1 and t2 can be assigned the same register (color) then this move is 

redundant and can be eliminated. 

•  A simple color choosing strategy that helps eliminate such moves: 
–  Add a new kind of “move related” edge between the nodes for t1 and t2 

in the interference graph. 
–  When choosing a color for t1 (or t2), if possible pick a color of an already 

colored node reachable by a move-related edge. 
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Example Color Choice 
•  Consider 3-coloring this graph, where the dashed edge indicates that 

there is a Mov from one temporary to another. 

 

•  After coloring the rest, we have a choice: 
–  Picking yellow is better than red because it will eliminate a move. 
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Coalescing Interference Graphs 
•  A more aggressive strategy is to coalesce nodes of the interference 

graph if they are connected by move-related edges. 
–  Coalescing the nodes forces the two temporaries to be assigned the same 

register. 

•  Idea: interleave simplification and coalescing to maximize the 
number of moves that can be eliminated. 

•  Problem: coalescing can sometimes increase the degree of a 
node. 
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Conservative Coalescing 
•  Two strategies are guaranteed to preserve the k-colorability of the 

interference graph. 

•  Brigg’s strategy: It's safe to coalesce x & y if the resulting node will 
have fewer than k neighbors (with degree ≥ k). 

•  George’s strategy: We can safely coalesce x & y if for every neighbor t 
of x, either t already interferes with y or t has degree < k. 
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Complete Register Allocation Algorithm 
1.  Build interference graph (precolor nodes as necessary). 

–  Add move related edges 
2.  Reduce the graph (building a stack of nodes to color). 

1.  Simplify the graph as much as possible without removing nodes that are 
move related (i.e. have a move-related neighbor). Remaining nodes are 
high degree or move-related. 

2.  Coalesce move-related nodes using Brigg’s or George’s strategy. 
3.  Coalescing can reveal more nodes that can be simplified, so repeat 2.1 

and 2.2 until no node can be simplified or coalesced. 
4.  If no nodes can be coalesced freeze (remove) a move-related edge and 

keep trying to simplify/coalesce. 
3.  If there are non-precolored nodes left, mark one for spilling, remove 

it from the graph and continue doing step 2. 
4.  When only pre-colored node remain, start coloring (popping 

simplified nodes off the top of the stack). 
1.  If a node must be spilled, insert spill code as on slide 14 and rerun the 

whole register allocation algorithm starting at step 1. 
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Last details 
•  After register allocation, the compiler should do a peephole 

optimization pass to remove redundant moves. 
•  Some architectures specify calling conventions that use registers to 

pass function arguments.   
–  It’s helpful to move such arguments into temporaries in the function 

prelude so that the compiler has as much freedom as possible during 
register allocation.  (Not an issue on X86, though.)   
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