Lecture 23
CIS 341: COMPILERS

Announcements

- HW 6: Dataflow Analysis and Optimizations
 - Due: Monday , April 20
- HW 7: Optimization & Experiments
 - Due: April 29th
- My Office Hours TODAY: 1:30 3:00

Phi nodes Alloc "promotion" Register allocation

REVISITING SSA

Single Static Assignment (SSA)

- LLVM IR names (via **%uids**) *all* intermediate values computed by the program.
- It makes the order of evaluation explicit.
- Each **%uid** is assigned to only once
 - Contrast with the mutable quadruple form
 - Note that dataflow analyses had these kill[n] sets because of updates to variables...
- Naïve implementation of backend: map **%uids** to stack slots
- Better implementation: map **%uids** to registers (as much as possible)
- Question: How do we convert a source program to make maximal use of **%uids**, rather than alloca-created storage?
 - two problems: control flow & location in memory
- Then: How do we convert SSA code to x86, mapping **%uids** to registers?
 - Register allocation.

Alloca vs. %UID

• Current compilation strategy:

• Directly map source variables into **%uids**?

• Does this always work?

What about If-then-else?

• How do we translate this into SSA?

entry: %y1 = ... %x1 = ... %z1 = ... %p = icmp ... br i1 %p, label %then, label %else then: $x^2 = add i^3 y_1, 1$ br label %merge else: %x3 = mult i32 %y1, 2 merge: %z2 = %add i32 ???, 3

• What do we put for ???

Phi Functions

- Solution: φ functions
 - Fictitious operator, used only for analysis
 - implemented by Mov at x86 level
 - Chooses among different versions of a variable based on the path by which control enters the phi node.

 $\texttt{suid} \texttt{=} \texttt{phi} < \texttt{ty} > \texttt{v}_1, < \texttt{label}_1 >, \dots, \texttt{v}_n, < \texttt{label}_n >$

Phi Nodes and Loops

- Importantly, the **%uids** on the right-hand side of a phi node can be defined "later" in the control-flow graph.
 - Means that **%uids** can hold values "around a loop"
 - Scope of **%uids** is defined by dominance (discussed soon)

```
entry:
  %y1 = ...
  %x1 = ...
  br label %body
body:
  %x2 = phi i32 %x1, %entry, %x3, %body
  %x3 = add i32 %x2, %y1
  %p = icmp slt i32, %x3, 10
  br i1 %p, label %body, label %after
after:
  ...
```

Alloca Promotion

- Not all source variables can be allocated to registers
 - If the address of the variable is taken (as permitted in C, for example)
 - If the address of the variable "escapes" (by being passed to a function)
- An alloca instruction is called promotable if neither of the two conditions above holds

- Happily, most local variables declared in source programs are promotable
 - That means they can be register allocated

Converting to SSA: Overview

- Start with the ordinary control flow graph that uses allocas
 - Identify "promotable" allocas
- Compute dominator tree information
- Calculate def/use information for each such allocated variable
- Insert ϕ functions for each variable at necessary "join points"
- Replace loads/stores to alloc'ed variables with freshly-generated %uids
- Eliminate the now unneeded load/store/alloca instructions.

Where to Place ϕ functions?

- Need to calculate the "Dominance Frontier"
- Node A *strictly dominates* node B if A dominates B and $A \neq B$.
 - Note: A does not strictly dominate B if A does not dominate B or A = B.
- The *dominance frontier* of a node B is the set of all CFG nodes y such that B dominates a predecessor of y but does not strictly dominate y
 - Intuitively: starting at B, there is a path to y, but there is another route to y that does not go through B
- Write DF[n] for the dominance frontier of node n.

Dominance Frontiers

- Example of a dominance frontier calculation results
- $DF[1] = \{1\}, DF[2] = \{1,2\}, DF[3] = \{2\}, DF[4] = \{1\}, DF[5] = \{8,0\}, DF[6] = \{8\}, DF[7] = \{7,0\}, DF[8] = \{0\}, DF[9] = \{7,0\}, DF[0] = \{\}$

Algorithm For Computing DF[n]

- Assume that doms[n] stores the dominator tree (so that doms[n] is the *immediate dominator* of n in the tree)
- Adds each B to the DF sets to which it belongs

```
for all nodes B

if \#(pred[B]) \ge 2 // (just an optimization)

for each p \in pred[B] {

runner := p // start at the predecessor of B

while (runner \neq doms[B]) // walk up the tree adding B

DF[runner] := DF[runner] U {B}

runner := doms[runner]

}
```

Insert \$\$ at Join Points

- Lift the DF[n] to a set of nodes N in the obvious way: $DF[N] = \bigcup_{n \in N} DF[n]$
- Suppose that at variable x is defined at a set of nodes N.
- $DF_0[N] = DF[N]$ $DF_{i+1}[N] = DF[DF_i[N] \cup N]$
- Let J[N] be the *least fixed point* of the sequence: $DF_0[N] \subseteq DF_1[N] \subseteq DF_2[N] \subseteq DF_3[N] \subseteq ...$
 - That is, $J[N] = DF_k[N]$ for some k such that $DF_k[N] = DF_{k+1}[N]$
- J[N] is called the "join points" for the set N
- We insert ϕ functions for the variable x at each such join point.
 - $x = \phi(x, x, ..., x)$; (one "x" argument for each predecessor of the node)
 - In practice, J[N] is never directly computed, instead you use a worklist algorithm that keeps adding nodes for $DF_k[N]$ until there are no changes.
- Intuition:
 - If N is the set of places where x is modified, then DF[N] is the places where phi nodes need to be added, but those also "count" as modifications of x, so we need to insert the phi nodes to capture those modifications too...

Example Join-point Calculation

- Suppose the variable x is modified at nodes 3 and 6
 - Where would we need to add phi nodes?
- $DF_0[\{3,6\}] = DF[\{3,6\}] = DF[3] \cup DF[6] = \{2,8\}$
- DF₁[{3,6}]
 - $= \mathsf{DF}[\mathsf{DF}_{0}\{3,6\} \cup \{3,6\}]$
 - $= DF[\{2,3,6,8\}]$
 - = DF[2] U DF[3] U DF[6] U DF[8]
 - $= \{1,2\} \cup \{2\} \cup \{8\} \cup \{0\} = \{1,2,8,0\}$
- $\mathsf{DF}_2[\{3,6\}]$
 - = ... = {1,2,8,0}
- So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four spots.

- How to place phi nodes without breaking SSA?
 - Note: the "real" implementation combines many of these steps into one pass.
 - Places phis directly at the dominance frontier
- This example also illustrates other common optimizations:
 - Load after store/alloca
 - Dead store/alloca elimination

 How to place phi nodes without breaking SSA?

Insert

- Loads at the end of each block

 How to place phi nodes without breaking SSA?

Insert

- Loads at the end of each block
- Insert stores
 after φ-nodes

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored

- Remove the load

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

- Dead Store Elimination (DSE)
 - Eliminate all stores with no subsequent loads.
- Dead Alloca Elimination (DAE)
 - Eliminate all allocas with no subsequent loads/stores.

- Dead Store Elimination (DSE)
 - Eliminate all stores with no subsequent loads.
 - Dead Alloca Elimination (DAE)
 - Eliminate all allocas with no subsequent loads/stores.

- Eliminate **φ nodes**:
 - Singletons
 - With identical values from each predecessor
 - See Aycock & Horspool, 2002

- Eliminate **φ** nodes:
 - Singletons
 - With identical values from each predecessor

See lec23.zip Makefile for how to get a trace of LLVM's optimization passes

OPTIMIZATIONS IN LLVM

LLVM Phi Placement

- This transformation is also sometimes called register promotion
 - older versions of LLVM called this "mem2reg" memory to register promotion
- In practice, LLVM combines this transformation with *scalar replacement of aggregates* (SROA)
 - i.e. transforming loads/stores of structured data into loads/stores on register-sized data
- These algorithms are (one reason) why LLVM IR allows annotation of predecessor information in the .ll files
 - Simplifies computing the DF

Registers

REGISTER ALLOCATION

Zdancewic CIS 341: Compilers

Register Allocation

- Once we have the program in SSA form we can do register allocation.
- Basic process:
- 1. Compute liveness information for each temporary.
- 2. Create an *interference graph*:
 - Nodes are temporary variables.
 - There is an edge between node n and m if n is live at the same time as m
- 3. Try to color the graph
 - Each color corresponds to a register
- 4. In case step 3. fails, "spill" a register to the stack and repeat the whole process.
- 5. Rewrite the program to use registers

Interference Graphs

- Nodes of the graph are **%uids**
- Edges connect variables that *interfere* with each other
 - Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph across which they are both live).
- Register assignment is a *graph coloring*.
 - A graph coloring assigns each node in the graph a color (register)
 - Any two nodes connected by an edge must have different colors.
- Example:

```
// live = {%a}
%b1 = add i32 %a, 2
                                                   &ans
                                                                           %ans
                                             %a
                                                                    °а
// live = {%a, %b1}
%c = mult i32 %b1, %b1
// live = {%a, %c}
                                            %b2
                                                  %C
                                      %b1
%b2 = add i32 %c, 1
// live = {%a, %b2}
                                      Interference Graph
                                                              2-Coloring of the graph
%ans = mult i32 %b2, %a
                                                              red = FAX
// live = {%ans}
                                                              yellow = EBX
return %ans;
```

Register Allocation Questions

- Can we efficiently find a k-coloring of the graph whenever possible?
 - Answer: in general the problem is NP-complete (it requires search)
 - But, we can do an efficient approximation using heuristics.
- How do we assign registers to colors?
 - If we do this in a smart way, we can eliminate redundant MOV instructions.
- What do we do when there aren't enough colors/registers?
 - We have to use stack space, but how do we do this effectively?

Coloring a Graph: Kempe's Algorithm

- Kempe [1879] provides this algorithm for K-coloring a graph.
- It's a recursive algorithm that works in three steps:
- Step 1: Find a node with degree < K and cut it out of the graph.
 - Remove the nodes and edges.
 - This is called *simplifying* the graph
- Step 2: Recursively K-color the remaining subgraph
- Step 3: When remaining graph is colored, there must be at least one free color available for the deleted node (since its degree was < K). Pick such a color.

Recursing Down the Simplified Graphs

Assigning Colors on the way back up.

Failure of the Algorithm

- If the graph cannot be colored, it will simplify to a graph where every node has at least K neighbors.
 - This can happen even when the graph is K-colorable!
 - This is a symptom of NP-hardness (it requires search)
- Example: When trying to 3-color this graph:

Spilling

- Idea: If we can't K-color the graph, we need to store one temporary variable on the stack.
- Which variable to spill?
 - Pick one that isn't used very frequently
 - Pick one that isn't used in a (deeply nested) loop
 - Pick one that has high interference (since removing it will make the graph easier to color)
- In practice: some weighted combination of these criteria
- When coloring:
 - Mark the node as spilled
 - Remove it from the graph
 - Keep recursively coloring

Spilling, Pictorially

- Select a node to spill
- Mark it and remove it from the graph
- Continue coloring

Optimistic Coloring

- Sometimes it is possible to color a node marked for spilling.
 - If we get "lucky" with the choices of colors made earlier.
- Example: When 2-coloring this graph:

- Even though the node was marked for spilling, we can color it.
- So: on the way down, mark for spilling, but don't actually spill...

Accessing Spilled Registers

- If optimistic coloring fails, we need to generate code to move the spilled temporary to & from memory.
- Option 1: Reserve registers specifically for moving to/from memory.
 - Con: Need at least two registers (one for each source operand of an instruction), so decreases total # of available registers by 2.
 - Pro: Only need to color the graph once.
 - Not good on X86 (especially 32bit) because there are too few registers & too many constraints on how they can be used.
- Option 2: Rewrite the program to use a new temporary variable, with explicit moves to/from memory.
 - Pro: Need to reserve fewer registers.
 - Con: Introducing temporaries changes live ranges, so must recompute liveness & recolor graph
 - This strategy is usually used on X86.

Example Spill Code

- Suppose temporary t is marked for spilling to stack slot [rbp+offs]
- Rewrite the program like this:

t = a op b;	t = a op b // defn. of t
•••	Mov [rbp+offs], t
x = t op c	 Mov t37, [rbp+offs] //use1oft x = t37 op c
y = d op t	 Mov t38, [rbp+offs] //use 2 oft y = d op t38

- Here, ±37 and ±38 are freshly generated temporaries that replace ± for different uses of ±.
- Rewriting the code in this way breaks t's live range up:
 t, t37, t38 are only live across one edge

Precolored Nodes

- Some variables must be pre-assigned to registers.
 - E.g. on X86 the multiplication instruction: IMul must define %rax
 - The "Call" instruction should kill the caller-save registers %rax, %rcx, %rdx.
 - Any temporary variable live across a call interferes with the caller-save registers.
- To properly allocate temporaries, we treat registers as nodes in the interference graph with pre-assigned colors.
 - Pre-colored nodes can't be removed during simplification.
 - Trick: Treat pre-colored nodes as having "infinite" degree in the interference graph – this guarantees they won't be simplified.
 - When the graph is empty except the pre-colored nodes, we have reached the point where we start coloring the rest of the nodes.

Picking Good Colors

- When choosing colors during the coloring phase, *any* choice is semantically correct, but some choices are better for performance.
- Example:
 - movq t1, t2
 - If t1 and t2 can be assigned the same register (color) then this move is redundant and can be eliminated.
- A simple color choosing strategy that helps eliminate such moves:
 - Add a new kind of "move related" edge between the nodes for t1 and t2 in the interference graph.
 - When choosing a color for t1 (or t2), if possible pick a color of an already colored node reachable by a move-related edge.

Example Color Choice

• Consider 3-coloring this graph, where the dashed edge indicates that there is a Mov from one temporary to another.

- After coloring the rest, we have a choice:
 - Picking yellow is better than red because it will eliminate a move.

CIS 341: Compilers

Coalescing Interference Graphs

- A more aggressive strategy is to *coalesce* nodes of the interference graph if they are connected by move-related edges.
 - Coalescing the nodes *forces* the two temporaries to be assigned the same register.

- Idea: interleave simplification and coalescing to maximize the number of moves that can be eliminated.
- Problem: coalescing can sometimes increase the degree of a node.

Conservative Coalescing

- Two strategies are guaranteed to preserve the k-colorability of the interference graph.
- *Brigg's strategy*: It's safe to coalesce x & y if the resulting node will have fewer than k neighbors (with degree $\ge k$).
- *George's strategy:* We can safely coalesce x & y if for every neighbor t of x, either t already interferes with y or t has degree < k.

Complete Register Allocation Algorithm

- 1. Build interference graph (precolor nodes as necessary).
 - Add move related edges
- 2. Reduce the graph (building a stack of nodes to color).
 - 1. Simplify the graph as much as possible without removing nodes that are move related (i.e. have a move-related neighbor). Remaining nodes are high degree or move-related.
 - 2. Coalesce move-related nodes using Brigg's or George's strategy.
 - 3. Coalescing can reveal more nodes that can be simplified, so repeat 2.1 and 2.2 until no node can be simplified or coalesced.
 - 4. If no nodes can be coalesced *freeze* (remove) a move-related edge and keep trying to simplify/coalesce.
- 3. If there are non-precolored nodes left, mark one for spilling, remove it from the graph and continue doing step 2.
- 4. When only pre-colored node remain, start coloring (popping simplified nodes off the top of the stack).
 - 1. If a node must be spilled, insert spill code as on slide 14 and rerun the whole register allocation algorithm starting at step 1.

Last details

- After register allocation, the compiler should do a peephole optimization pass to remove redundant moves.
- Some architectures specify calling conventions that use registers to pass function arguments.
 - It's helpful to move such arguments into temporaries in the function prelude so that the compiler has as much freedom as possible during register allocation. (Not an issue on X86, though.)