
CIS 341: COMPILERS
Lecture 24

Announcements

•  HW 6: Dataflow Analysis and Optimizations
–  Due: Monday , April 20

•  HW 7: Optimization & Experiments
–  Due: April 29th

Zdancewic CIS 341: Compilers 2

REGISTER ALLOCATION

Zdancewic CIS 341: Compilers 3

Registers
���

Register Allocation
•  Once we have the program in SSA form we can do register allocation.

•  Basic process:
1.  Compute liveness information for each temporary.
2.  Create an interference graph:

–  Nodes are temporary variables.
–  There is an edge between node n and m if n is live at the same time as m

3.  Try to color the graph
–  Each color corresponds to a register

4.  In case step 3. fails, “spill” a register to the stack and repeat the
whole process.

5.  Rewrite the program to use registers

CIS 341: Compilers 4

Interference Graphs
•  Nodes of the graph are %uids
•  Edges connect variables that interfere with each other

–  Two variables interfere if their live ranges intersect (i.e. there is an edge in
the control-flow graph across which they are both live).

•  Register assignment is a graph coloring.
–  A graph coloring assigns each node in the graph a color (register)
–  Any two nodes connected by an edge must have different colors.

•  Example:
���

CIS 341: Compilers 5

���
%b1 = add i32 %a, 2  
 
%c = mult i32 %b1, %b1  
 
%b2 = add i32 %c, 1  
 
%ans = mult i32 %b2, %a
 
return %ans;

// live = {%a}���
%b1 = add i32 %a, 2  
// live = {%a,%b1}  
%c = mult i32 %b1, %b1  
// live = {%a,%c} 
%b2 = add i32 %c, 1  
// live = {%a,%b2} 
%ans = mult i32 %b2, %a
// live = {%ans} 
return %ans;

Interference Graph

%a

%b1 %b2 %c

%ans

2-Coloring of the graph���
red = EAX
yellow = EBX

%a

%b1 %b2 %c

%ans

Register Allocation Questions
•  Can we efficiently find a k-coloring of the graph whenever possible?

–  Answer: in general the problem is NP-complete (it requires search)
–  But, we can do an efficient approximation using heuristics.

•  How do we assign registers to colors?
–  If we do this in a smart way, we can eliminate redundant MOV

instructions.

•  What do we do when there aren’t enough colors/registers?
–  We have to use stack space, but how do we do this effectively?

CIS 341: Compilers 6

Coloring a Graph: Kempe’s Algorithm
•  Kempe [1879] provides this algorithm for K-coloring a graph.
•  It’s a recursive algorithm that works in three steps:
•  Step 1: Find a node with degree < K and cut it out of the graph.

–  Remove the nodes and edges.
–  This is called simplifying the graph

•  Step 2: Recursively K-color the remaining subgraph
•  Step 3: When remaining graph is colored, there must be at least one

free color available for the deleted node (since its degree was < K).
Pick such a color.

CIS 341: Compilers 7

Example: 3-color this Graph

CIS 341: Compilers 8

Recursing Down the Simplified Graphs

Example: 3-color this Graph

CIS 341: Compilers 9

Assigning Colors on the way back up.

Failure of the Algorithm
•  If the graph cannot be colored, it will simplify to a graph where every

node has at least K neighbors.
–  This can happen even when the graph is K-colorable!
–  This is a symptom of NP-hardness (it requires search)

•  Example: When trying to 3-color this graph:

CIS 341: Compilers 10

?

Spilling
•  Idea: If we can’t K-color the graph, we need to store one temporary

variable on the stack.
•  Which variable to spill?

–  Pick one that isn’t used very frequently
–  Pick one that isn’t used in a (deeply nested) loop
–  Pick one that has high interference (since removing it will make the graph

easier to color)

•  In practice: some weighted combination of these criteria

•  When coloring:
–  Mark the node as spilled
–  Remove it from the graph
–  Keep recursively coloring

CIS 341: Compilers 11

Spilling, Pictorially
•  Select a node to spill
•  Mark it and remove it from the graph
•  Continue coloring

CIS 341: Compilers 12

X

Optimistic Coloring
•  Sometimes it is possible to color a node marked for spilling.

–  If we get “lucky” with the choices of colors made earlier.

•  Example: When 2-coloring this graph:

•  Even though the node was marked for spilling, we can color it.
•  So: on the way down, mark for spilling, but don’t actually spill…

CIS 341: Compilers 13

X

…
X

Accessing Spilled Registers
•  If optimistic coloring fails, we need to generate code to move the

spilled temporary to & from memory.
•  Option 1: Reserve registers specifically for moving to/from memory.

–  Con: Need at least two registers (one for each source operand of an
instruction), so decreases total # of available registers by 2.

–  Pro: Only need to color the graph once.
–  Not good on X86 (especially 32bit) because there are too few registers &

too many constraints on how they can be used.

•  Option 2: Rewrite the program to use a new temporary variable, with
explicit moves to/from memory.
–  Pro: Need to reserve fewer registers.
–  Con: Introducing temporaries changes live ranges, so must recompute

liveness & recolor graph
–  This strategy is usually used on X86.

CIS 341: Compilers 14

Example Spill Code
•  Suppose temporary t is marked for spilling to stack slot ���

[rbp+offs]

•  Rewrite the program like this:���
%t = a op b; %t = a op b // defn. of t 
… movq %t, [rbp+offs]  

…  
%x = %t op c movq [rbp+offs], %t37 // use 1 of t 
… %x = %t37 op c  

 …  
%y = d op %t movq [rbp+offs], %t38 // use 2 of t 

%y = d op %t38

•  Here, %t37 and %t38 are freshly generated temporaries that
replace %t for different uses of %t.

•  Rewriting the code in this way breaks t’s live range up:
 %t, %t37, %t38 are only live across one edge

CIS 341: Compilers 15

Precolored Nodes
•  Some variables must be pre-assigned to registers.

–  E.g. on X86 the multiplication instruction: IMul must define %rax
–  The “Call” instruction should kill the caller-save registers %rax, %rcx,

%rdx.
–  Any temporary variable live across a call interferes with the caller-save

registers.

•  To properly allocate temporaries, we treat registers as nodes in the
interference graph with pre-assigned colors.
–  Pre-colored nodes can’t be removed during simplification.
–  Trick: Treat pre-colored nodes as having “infinite” degree in the

interference graph – this guarantees they won’t be simplified.
–  When the graph is empty except the pre-colored nodes, we have reached

the point where we start coloring the rest of the nodes.

CIS 341: Compilers 16

Picking Good Colors
•  When choosing colors during the coloring phase, any choice is

semantically correct, but some choices are better for performance.
•  Example:���

movq %t1, %t2
–  If t1 and t2 can be assigned the same register (color) then this move is

redundant and can be eliminated.

•  A simple color choosing strategy that helps eliminate such moves:
–  Add a new kind of “move related” edge between the nodes for t1 and t2

in the interference graph.
–  When choosing a color for t1 (or t2), if possible pick a color of an already

colored node reachable by a move-related edge.

CIS 341: Compilers 17

Example Color Choice
•  Consider 3-coloring this graph, where the dashed edge indicates that

there is a Mov from one temporary to another.

•  After coloring the rest, we have a choice:
–  Picking yellow is better than red because it will eliminate a move.

CIS 341: Compilers 18

Move
related
edge

?

Coalescing Interference Graphs
•  A more aggressive strategy is to coalesce nodes of the interference

graph if they are connected by move-related edges.
–  Coalescing the nodes forces the two temporaries to be assigned the same

register.

•  Idea: interleave simplification and coalescing to maximize the
number of moves that can be eliminated.

•  Problem: coalescing can sometimes increase the degree of a
node.

CIS 341: Compilers 19

t

u t,u

a b

c

a b

c

Conservative Coalescing
•  Two strategies are guaranteed to preserve the k-colorability of the

interference graph.

•  Brigg’s strategy: It's safe to coalesce x & y if the resulting node will
have fewer than k neighbors (with degree ≥ k).

•  George’s strategy: We can safely coalesce x & y if for every neighbor t
of x, either t already interferes with y or t has degree < k.

CIS 341: Compilers 20

Complete Register Allocation Algorithm
1.  Build interference graph (precolor nodes as necessary).

–  Add move related edges
2.  Reduce the graph (building a stack of nodes to color).

1.  Simplify the graph as much as possible without removing nodes that are
move related (i.e. have a move-related neighbor). Remaining nodes are
high degree or move-related.

2.  Coalesce move-related nodes using Brigg’s or George’s strategy.
3.  Coalescing can reveal more nodes that can be simplified, so repeat 2.1

and 2.2 until no node can be simplified or coalesced.
4.  If no nodes can be coalesced freeze (remove) a move-related edge and

keep trying to simplify/coalesce.
3.  If there are non-precolored nodes left, mark one for spilling, remove

it from the graph and continue doing step 2.
4.  When only pre-colored node remain, start coloring (popping

simplified nodes off the top of the stack).
1.  If a node must be spilled, insert spill code as on slide 14 and rerun the

whole register allocation algorithm starting at step 1.

CIS 341: Compilers 21

Last details
•  After register allocation, the compiler should do a peephole

optimization pass to remove redundant moves.
•  Some architectures (e.g. x86-64) specify calling conventions that use

registers to pass function arguments.
–  It’s helpful to move such arguments into temporaries in the function

prelude so that the compiler has as much freedom as possible during
register allocation.

–  When compiling C (or Oat), the default LLVM compilation strategy
achieves this by using alloca to create storage space for function
parameters. Subsequent alloca promotion turns them into temporaries.

CIS 341: Compilers 22

MEMORY MANAGEMENT

Zdancewic CIS 341: Compilers 23

���

Memory Management
•  Program data is stored in memory.

–  Memory is a finite resource: programs may need to reuse some of it.
•  Most programming languages provide two means of structuring data

stored in memory:
•  Stack: memory space (stack frames) for storing data local to a function

body.
–  The programming language provides facilities for automatically managing

stack-allocated data. (i.e. compiler emits code for allocating/freeing stack
frames)

–  (Aside: Unsafe languages like C/C++ don’t enforce the stack invariant,
which leads to bugs that can be exploited for code injection attacks…)

•  Heap: memory space for storing data that is created by a function but
needed in a caller. (Its lifetime is unknown at compile time.)
–  Freeing/reusing this memory can be up to the programmer (C/C++)
–  (Aside: Freeing memory twice or never freeing it also leads to many bugs

in C/C++ programs…)
–  Garbage collection automates memory management for Java/ML/C#/etc.

CIS 341: Compilers 24

EXPLICIT MEMORY
MANAGEMENT

Zdancewic CIS 341: Compilers 25

���

Unix Memory Layout

CIS 341: Compilers 26

Kernel Text / Data

User Stack

Uninitialized

Initialized

User Program Text / Data

Reserved

User Heap

User stack is
automatically

managed by the
compiler

infrastructure

User Heap is
managed by a
combination of
malloc & free.

This region is not
allocated to the
program – the

boundary can be set
by the brk
function.

Explicit Memory Management
•  On unix, libc provides a library that allows programmers to manage

the heap:
•  void * malloc(size_t n)

–  Allocates n bytes of storage on the heap and returns its address.

•  void free(void *addr)
–  Releases the memory previously allocated by malloc address addr.

•  These are user-level library functions. Internally, malloc uses brk
(or sbrk) system calls to have the kernel allocate space to the
process.

CIS 341: Compilers 27

Simple Implementation: Free Lists
•  Arrange the blocks of unused memory in a free list.

–  Each block has a pointer to the next free block.
–  Each block keeps track of its size. (Stored before & after data parts.)
–  Each block has a status flag = allocated or unallocated (Kept as a bit in the first

size (assuming size is a multiple of 2 so the last bit is unused)

•  Malloc: walk down free list, find a block big enough
–  First fit? Best fit?

•  Free: insert the freed block into the free list.
–  Perhaps keep list sorted so that adjacent blocks can be merged.

•  Problems:
–  Fragmentation ruins the heap
–  Malloc can be slow

CIS 341: Compilers 28

free free free allocated

Exponential Scaling / Buddy System
•  Keep an array of freelists: FreeList[i]

–  FreeList[i] points to a list of blocks of size 2i

•  Malloc: round requested size up to nearest power of 2
–  When FreeList[i] is empty, divide a block from FreeList[i+1] into two

halves, put both chunks into FreeList[i]
–  Alternatively, merge together two adjacent nodes from FreeList[i-1]

•  Free: puts freed block back into appropriate free list

•  Malloc & free take O(1) time
•  This approach trades external fragmentation (within the heap as a

whole) for internal fragmentation (within each block).
–  Wasted space: ~30%

CIS 341: Compilers 29

GARBAGE COLLECTION

Zdancewic CIS 341: Compilers 30

���

Why Garbage Collection?
•  Manual memory management is cumbersome & error prone:

–  Freeing the same pointer twice is ill defined (seg fault or other bugs)
–  Calling free on some pointer not created by malloc (e.g. to an element

of an array) is also ill defined
–  malloc and free aren’t modular: To properly free all allocated

memory, the programmer has to know what code “owns” each object.
Owner code must ensure free is called just once.

–  Not calling free leads to space leaks: memory never reclaimed
•  Many examples of space leaks in long-running programs

•  Garbage collection:
–  Have the language runtime system determine when an allocated chunk of

memory will no longer be used and free it automatically.

–  But… garbage collector is usually the most complex part of a language’s
runtime system.

–  Garbage collection does impose costs (performance, predictability)

CIS 341: Compilers 31

Memory Use & Reachability
•  When is a chunk of memory no longer needed?

–  In general, this problem is undecidable.

•  We can approximate this information by freeing memory that can’t be
reached from any root references.
–  A root pointer is one that might be accessible directly from the program

(i.e. they’re not in the heap).
–  Root pointers include pointer values stored in registers, in global

variables, or on the stack.

•  If a memory cell is part of a record (or other data structure) that can be
reached by traversing pointers from the root, it is live.

•  It is safe to reclaim all memory cells not reachable from a root (such
cells are garbage).

CIS 341: Compilers 32

Reachability & Pointers
•  Starting from stack, registers, & globals (roots), determine which

objects in the heap are reachable following pointers.
•  Reclaim any object that isn't reachable.
•  Requires being able to distinguish pointer values from other

values (e.g., ints).
•  Type safe languages:

–  OCaml, SML/NJ use the low bit: ���
1 it's a scalar, 0 it's a pointer. (Hence 31-bit ints in OCaml)

–  Java puts the tag bits in the object meta-data (uses more space).
–  Type safety implies that casts can’t introduce new pointers
–  Also, pointers are abstract (references), so objects can be moved

without changing the meaning of the program
•  Unsafe languages:

–  Pointers aren’t abstract, they can’t be moved.
–  Boehm-Demers-Weiser conservative collector for C use heuristics:

(e.g., the value doesn't point into an allocated object, pointers are
multiples of 4, etc.)

–  May not find as much garbage due to conservativity.

CIS 341: Compilers 33

Example Object Graph
•  Pointers in the stack, registers, and globals are roots

CIS 341: Compilers 34

EBX EAX

Stack

MARK & SWEEP GC

Zdancewic CIS 341: Compilers 35

���

Mark and Sweep Garbage Collection
•  Classic algorithm with two phases:

•  Phase 1: Mark
–  Start from the roots
–  Do depth-first traversal, marking every object reached.

•  Phase 2: Sweep
–  Walk over all allocated objects and check for marks.
–  Unmarked objects are reclaimed.
–  Marked objects have their marks cleared.
–  Optional: compact all live objects in heap by moving them adjacent to

one another. (needs extra work & indirection to “patch up” pointers)

CIS 341: Compilers 36

Stack

Results of Marking Graph

CIS 341: Compilers 37

EBX EAX

Unreachable
blocks are
garbage

Implementing the Mark Phase
•  Depth-first search has a natural recursive algorithm.
•  Question: what happens when traversing a long linked list?

•  Where do we store the information needed to perform the traversal?
–  (In general, garbage collectors are tricky to implement because if they

allocate memory who manages that?!)

CIS 341: Compilers 38

Deutsch-Schorr-Waite (DSW) Algorithm
•  No need for a stack, it is possible to use the graph being traversed

itself to store the data necessary…
•  Idea: during depth-first-search, each pointer is followed only once.

The algorithm can reverse the pointers on the way down and restore
them on the way back up.
–  Mark a bit on each object traversed on the way down.

•  Two pointers:
–  curr: points to the current node
–  prev points to the previous node

•  On the way down, flip pointers as you traverse them:
–  tmp := curr���

curr := curr.next���
tmp.next := prev���
prev := curr

CIS 341: Compilers 39

Example of DSW (traversing down)

CIS 341: Compilers 40

prev curr

prev curr

prev curr

prev curr

Costs & Implications
•  Need to generalize to account for objects that have multiple outgoing

pointers.
•  Depth-first traversal terminates when there are no children pointers or

all children are already marked.
–  Accounts for cycles in the object graph.

•  The Deutsch-Schorr-Waite algorithm breaks objects during the
traversal.
–  All computation must be halted during the mark phase. (Bad for

concurrent programs!)

•  Mark & Sweep algorithm reads all memory in use by the program
(even if it’s garbage!)
–  Running time is proportional to the total amount of allocated memory

(both live and garbage).
–  Can pause the programs for long times during garbage collection.

CIS 341: Compilers 41

