
CIS 341: COMPILERS
Lecture 25

Announcements

•  HW 7: Optimization & Experiments
–  Available now
–  Due: April 29th

•  My office hours today are cancelled.

•  Final Exam:
–  Thursday, May 7th
–  9:00AM
–  Moore 216

Zdancewic CIS 341: Compilers 2

MARK & SWEEP GC

Zdancewic CIS 341: Compilers 3

���

Example Object Graph
•  Pointers in the stack, registers, and globals are roots

CIS 341: Compilers 4

EBX EAX

Stack

Mark and Sweep Garbage Collection
•  Classic algorithm with two phases:

•  Phase 1: Mark
–  Start from the roots
–  Do depth-first traversal, marking every object reached.

•  Phase 2: Sweep
–  Walk over all allocated objects and check for marks.
–  Unmarked objects are reclaimed.
–  Marked objects have their marks cleared.
–  Optional: compact all live objects in heap by moving them adjacent to

one another. (needs extra work & indirection to “patch up” pointers)

CIS 341: Compilers 5

Stack

Results of Marking Graph

CIS 341: Compilers 6

EBX EAX

Unreachable
blocks are
garbage

Costs & Implications
•  Need to generalize to account for objects that have multiple outgoing

pointers.
•  Depth-first traversal terminates when there are no children pointers or

all children are already marked.
–  Accounts for cycles in the object graph.

•  The Deutsch-Schorr-Waite algorithm breaks objects during the
traversal.
–  All computation must be halted during the mark phase. (Bad for

concurrent programs!)

•  Mark & Sweep algorithm reads all memory in use by the program
(even if it’s garbage!)
–  Running time is proportional to the total amount of allocated memory

(both live and garbage).
–  Can pause the programs for long times during garbage collection.

CIS 341: Compilers 7

COPYING COLLECTION

Zdancewic CIS 341: Compilers 8

���

Copying Garbage Collection
•  Like mark & sweep: collects all garbage.
•  Basic idea: use two regions of memory

–  One region is the memory in use by the program. New allocation
happens in this region.

–  Other region is idle until the GC requires it.

•  Garbage collection algorithm:
–  Traverse over live objects in the active region (called the “from- space”),

copying them to the idle region (called the “to-space”).
–  After copying all reachable data, switch the roles of the from-space and

to-space.
–  All dead objects in the (old) from-space are discarded en masse.
–  A side effect of copying is that all live objects are compacted together.

CIS 341: Compilers 9

Cheney’s Algorithm (1)
•  Idea: maintain two pointers into the to-space

–  Scan – points to the next piece of data to be examined
–  Free – points to the next available word of memory
–  Invariant: data pointed to by values between the scan and free pointers

might need to be copied to the to-space
–  Leave behind “forwarding pointers” to the new copies.

•  Crucial subroutine: (note implicit use of type information)

 pointer copy-forward(pointer p)
–  If structure pointed to by p has already been copied, return the

corresponding forwarding pointer.
–  Otherwise:

•  Copy the structure pointed to by p into the to-space. (Incrementing the free
pointer)

•  Mark the structure in from-space as copied and put a forwarding pointer in
from-space to the copy in to-space

•  Return the pointer to the new copy in to-space

CIS 341: Compilers 10

Cheney’s Algorithm (2)
•  When garbage collection is triggered:

–  Initialize the free pointer to be beginning of to-space

•  For each root R containing a pointer ptr:���
 Set ptr’ = copy-forward(ptr)���
 Set R := ptr’���
 Set the scan pointer to ptr’.���
 While (scan != free)
–  Increment the scan pointer (element-wise according to types of the fields

in the underlying structure)
–  If the scan pointer points to a pointer ptr

•  Set *scan := copy-forward(ptr)

CIS 341: Compilers 11

Run of Cheney’s Algorithm

CIS 341: Compilers 12

A

C B

D E

From-space

To-space

Roots

Memory at the point���
that GC is triggered.

free

Run of Cheney’s Algorithm

CIS 341: Compilers 13

A’ A

C B

D E

From-space

To-space

Roots

A’

scan free

copy-forward on the ���
root pointer.

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Run of Cheney’s Algorithm

CIS 341: Compilers 14

A’ A

C B’ B

D E

From-space

To-space

Roots

A’

scan free

B’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the first element ���
of A’ in to-space, copying���
B and modifying the pointer���
in the datastructure.

Run of Cheney’s Algorithm

CIS 341: Compilers 15

A’ A

C’ C B’ B

D E

From-space

To-space

Roots

A’

scan free

B’ C’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the second element ���
of A’ in to-space, copying���
C and modifying the pointer���
in the datastructure.

A’

C’ B’

Run of Cheney’s Algorithm

CIS 341: Compilers 16

A

C B

D
’

D E

From-space

To-space

Roots

A’

scan free

B’ C’ D’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the first element ���
of B’ in to-space, copying���
D and modifying the pointer���
in the datastructure.

Run of Cheney’s Algorithm

CIS 341: Compilers 17

A’ A

C’ C B’ B

D
’

D E

From-space

To-space

Roots

A’

scan free

B’ C’ D’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the second element ���
of B’ in to-space – it’s not���
a pointer.

Run of Cheney’s Algorithm

CIS 341: Compilers 18

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the third element ���
of B’ in to-space, copying���
E and modifying the pointer���
in the datastructure.

Run of Cheney’s Algorithm

CIS 341: Compilers 19

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the first element ���
of C’ in to-space, it has���
already been forwarded
so just update the pointer.

Run of Cheney’s Algorithm

CIS 341: Compilers 20

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Scan the second element ���
of C’ in to-space, it has���
already been forwarded
so just update the pointer.

Run of Cheney’s Algorithm

CIS 341: Compilers 21

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Run of Cheney’s Algorithm

CIS 341: Compilers 22

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Run of Cheney’s Algorithm

CIS 341: Compilers 23

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

scan free

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Run of Cheney’s Algorithm

CIS 341: Compilers 24

A’ A

C’ C B’ B

D
’

D E’ E

From-space

To-space

Roots

A’

free = scan

B’ C’ D’ E’

= Marked as forwarded
= Copied, not yet scanned
= Copied & scanned

Structures D and E���
have no pointers.

Free = Scan, so
we’re finished with this ���
root.

Run of Cheney’s Algorithm

CIS 341: Compilers 25

To-space

From-space

Roots

A’

free = scan

B’ C’ D’ E’

Tradeoffs of Copying Collection
•  Benefits:

–  Simple, no stack space needed to implement the algorithm.
–  Running time is proportional to the number of reachable objects (not all

allocated objects)
–  Automatically eliminates fragmentation by compacting memory during

copy phase.
–  malloc(n) is implemented by free := free + n

•  Drawbacks:
–  Twice as much memory is needed
–  Lots of memory traffic
–  Precise pointer/type information is required for traversal
–  Still can have long pauses

CIS 341: Compilers 26

Baker’s Concurrent GC
•  Variant of copying collection in which the program and the garbage

collector run concurrently.
•  Program holds only pointers to to-space
•  On field-fetch operation, if the pointer is in from-space, run copy-

forward instead of directly fetching.
–  Moves the structure to to-space to maintain the invariant
–  Incrementally garbage collects as the program touches data.

•  When the to-space fills up, swap to/from by copying the roots and
fixing up the stack and registers.

•  Avoids long pauses due to copying

CIS 341: Compilers 27

Generational Garbage Collection
•  Observation: If an object has been reachable for a long time, it is

likely to remain so.
•  In long-running programs, mark & sweep and copying collection

waste time and cache by scanning/copying old objects.
•  Idea: Assign objects to different generations G0, G1, G2, …

–  Generation G0 contains newest objects, most likely to become garbage (<
10% live)

–  Younger generations scanned for garbage much more frequently than
older generations.

–  New object eventually given tenure (promoted to the next generation) if
they last long enough.

–  Roots of garbage collection for G0 include objects in G1

•  Remembered sets:
–  Avoid scanning all tenured objects by keeping track of pointers from old

objects to new objects. Compiler emits extra code to keep track of such
pointer updates.

–  Pointers from old generations to new generations are uncommon

CIS 341: Compilers 28

GC in Practice
•  Combination of generational and incremental GC techniques reduce

delay
–  Millisecond pause times

•  Very large objects (e.g. big arrays) can be copied in a “virtual” fashion
without doing a physical copy
–  Complicates the book keeping

•  Some systems combine copying collection (for young data) with mark
& sweep (for old data)

•  Challenging to scale to server-scale systems with terabytes of memory
•  Interactions with OS matter a lot

–  It can be cheaper to do GC than it is to start paging

•  GC is here to stay (thanks to Java, C#, etc.)

CIS 341: Compilers 29

REFERENCE COUNTING

Zdancewic CIS 341: Compilers 30

���

Reference Counting
•  Idea: Keep track of the number of references to a given object.

–  When creating a new reference to the object, increase the reference count
–  On a call to free, decrement the reference count
–  If the reference count is 0, the object can be deallocated immediately

•  Deallocating an object will decrement reference counts of objects it
points to
–  Deallocations can “cascade,” causing lots of objects to be deallocated

•  Benefit: immediate reclamation of the space (no need to wait for
garbage collector)

•  Challenges:
–  Tracking reference counts efficiently
–  Cyclic data structures

Zdancewic CIS 341: Compilers 31

2

Example Reference Counts
•  Objects track reference counts.

CIS 341: Compilers 32

x

EBX EAX

Stack

2

2

3 1 1

1

1 1

2

Example Reference Counts
•  On free(x)

CIS 341: Compilers 33

x

EBX EAX

Stack

2

2

3 1 1

1

0 1

2

Example Reference Counts
•  On free(x)

CIS 341: Compilers 34

x

EBX EAX

Stack

2

2

3 1 1

1

0

1

Example Reference Counts
•  On free(x)

CIS 341: Compilers 35

x

EBX EAX

Stack

2

2

3 1 1

1

1

Example Reference Counts

CIS 341: Compilers 36

x

EBX EAX

Stack

2

2

3 1 1

1

Note that the cycle won’t
be freed.

Dealing with Cycles
•  Option 1: Require programmers to explicitly null-out references to

break cycles.

•  Option 2: Periodically run GC to collect cycles

•  Option 3: Require programmers to distinguish “weak pointers” from
“strong pointers”
–  weak pointers: if all references to an object are “weak” then the object

can be freed even with non-zero reference count.
–  “Back edges” in the object graph should be designated as weak
–  (Aside: weak pointers useful in GC settings too.)

•  In practice: Reference counts
–  Apples Cocoa framework used ref counts, recent versions use GC
–  iOS supports “automatic reference counting”

Zdancewic CIS 341: Compilers 37

COMPILER VERIFICATION

Zdancewic CIS 341: Compilers 38

���

Compiler Verification
•  1967: Correctness of a Compiler for Arithmetic

Expressions [McCarthy, Painter]

•  1972: Proving Compiler Correctness in a Mechanized
Logic���
[Milner, Weyhrauch]

•  … many interesting developments

•  2006-present: CompCert [Leroy, et al.]
–  (Nearly!) fully verified compiler from C to Power PC, ARM, etc.

•  Others:
–  Verified Software Toolchain [Appel, et al.]
–  Vellvm: Verified LLVM [Zdancewic, et a.]

See:	
 Compiler	
 Verifica0on,	
 A	
 Bibliography	
 [Dave,	
 2003]	

Motivation: Safety-critical Software
•  How do you know that the program you are running is correct?

•  Aircraft flight control software
•  Automobile engine controllers
•  Pacemakers
•  Autonomous vehicles
•  Embedded systems

•  Formal verification is expensive and time consuming, but sometimes
warranted…

Zdancewic CIS 341: Compilers 40

Motivation: SoftBound/CETS

•  Buffer overflow vulnerabilities.
•  Detect spatial/temporal memory

safety violations in legacy C
code.

•  Implemented as an LLVM pass.
•  What about correctness?

[NagarakaBe,	
 et	
 al.	
 PLDI	
 	
 ’09,	
 ISMM	
 ‘10]

hBp://www.cis.upenn.edu/acg/soJbound/	

Vellvm Framework

Transform
C	
 Source	

Code

Other	

Op0miza0ons

LLVM	

IR

LLVM	

IR Target

LLVM	

OCaml	
 Bindings	

Printer	
 Parser	

Coq	

Syntax	

Opera0onal	

Seman0cs	

Memory	

Model	

Type	
 System	

and	
 SSA	

Proof	
 Techniques	
 &	
 Metatheory	

Extract	

Vellvm Framework

C	
 Source	

Code

Other	

Op0miza0ons

LLVM	

IR

LLVM	

IR Target

LLVM	

OCaml	
 Bindings	

Printer	
 Parser	

Coq	

Syntax	

Opera0onal	

Seman0cs	

Memory	

Model	

Type	
 System	

and	
 SSA	

Proof	
 Techniques	
 &	
 Metatheory	

Extract	

Verified	

Transform

Motivation:Compiler Bugs

LLVM	

Random	
 test-­‐case	

genera0on

{8	
 other	
 C	
 compilers}

79	
 bugs:	
 	

25	
 cri0cal

202	
 bugs	

325	
 bugs	
 in	

total	

Source	

Programs	

[Yang	
 et	
 al.	
 PLDI	
 2011]	

Csmith – compiler testing infrastructure

CompCert
•  Initiated by Xavier Leroy of INRIA in 2006.
•  Idea: Build a compiler using an interactive theorem prover.

–  Prove formally that each compilation translation pass is correct.

Zdancewic CIS 341: Compilers 45

CompCert
•  Initiated by Xavier Leroy of INRIA in 2006.
•  Idea: Build a compiler using an interactive theorem prover.

–  Prove formally that each compilation translation pass is correct.
–  Implemented in Coq

Zdancewic CIS 341: Compilers 46

CompCert – does it work?

Zdancewic CIS 341: Compilers 47

The striking thing about our CompCert results is that the middle-end ���
bugs we found in all other compilers are absent. As of early 2011, the ���
under-development version of CompCert is the only compiler we have ���
tested for which Csmith cannot find wrong-code errors.

This is not for lack of trying: we have devoted about six CPU-years to the task.
The apparent unbreakability of CompCert supports a strong argument
that developing compiler optimizations within a proof framework, where
safety checks are explicit and machine-checked, has tangible benefits
for compiler users.

Finding	
 and	
 understanding	
 bugs	
 in	
 C	
 compilers	
 	

Yang	
 et	
 al.	
 PLDI	
 2011	

FORMALLY SPECIFYING
SEMANTICS

Zdancewic CIS 341: Compilers 48

���

Execution Models
•  Interpretation:

–  program represented by abstract syntax
–  tree traversed by interpreter

•  Compilation to native code:
–  program translated to machine instructions
–  executed by hardware

•  Compilation to virtual machine code:
–  program translated to “virtual machine” instructions
–  interpreted (efficiently)
–  further translated to machine code
–  just-in-time compiled to machine code

Simple Imperative Language

id := X|Y|Z|… 	
 	
 	
 	
 	
 	
 	
 	
 	
 Variables	

aexp := n | id | aexp + aexp | Arithme:c	
 Expressions 
 aexp – aexp | aexp * aexp 	
 	
 	
 	

bexp := true | false | aexp = aexp Boolean	
 Expressions  
 !bexp | bexp && bexp 	
 	
 	
 	
 	

cmd :=
 | SKIP Do	
 nothing	

 | id ::= aexp Assignment	

 | cmd ;; cmd Sequence	

 | IFB bexp THEN cmd ELSE cmd FI Condi:onal	

 | WHILE bexp DO cmd END Loop	

See	
 Vminus/Imp.v	
 for	
 the	
 	
 Coq	
 formalism	
 	

Formal Semantics
•  Basic idea: implement interpreters or simulators

–  Just as in the earliest 341 projects

•  “small step”: cmd / st ⟼ cmd’ / st’
–  say how a single step of computation affects the state
 x ::= 3 / {x=0} ⟼ skip / {x=3}
–  Implementation as an interpreter:���

step : (cmd * state) -> (cmd * state)

•  “large step”: cmd / st ⇓ st’
–  say how a command runs to completion to produce a final state
–  Implementation as an interpreter:���

eval: (cmd * state) -> state

Zdancewic CIS 341: Compilers 51

Correct Execution?
•  What does it mean for such a program to be executed

correctly?

•  Even at the interpreter level we could show equivalence
between the small-step and the large-step operational
semantics:

cmd	
 /	
 st	
 ⟼*	
 SKIP	
 /	
 st’	
 	
 	
 	
 	
 	

	

	
 iff	

	

cmd	
 /	
 st	
 	
 ⇓	
 	
 st’	

