Lecture 26

CIS 341: COMPILERS

Announcements

« HW 7: Optimization & Experiments
— Due: April 29t

* Final Exam:
— Thursday, May 7t
— 9:00AM
— Moore 216

* Visitor: Yaron Minsky of Jane St. Capital
— Monday, April 27
— Lunch: noon — 1:15 (Raisler Lounge) sign-up sheet on Piazza

— Talk: 2:00 - 3:00 (Raisler Lounge)
From Theory into Practice: the story of Incremental

Zdancewic CIS 341: Compilers

COMPILER VERIFICATION

Zdancewic CIS 341: Compilers

Compiler Correctness?

« We have to relate the source and target language semantics across the
compilation function C[-] : source — target.

cmd /st ¢—* SKIP /st

iff

Clecmd] / Clst] +—* C[st']

* Is this enough?
* What if cmd goes into an infinite loop?

Comparing Behaviors

Consider two programs P1 and P2 possibly in different languages.
— e.g. P1 is an Oat program, P2 is its compilation to LL

The semantics of the languages associate to each program a set of
observable behaviors:

»(P) and %(P)

Note: |5(P)| = 1 if P is deterministic, > 1 otherwise

What is Observable?

 For C-like languages:

observable behavior ::=
| terminates(st) (i.e. observe the final state)
| diverges
| goeswrong

* For pure functional languages:

observable behavior ::=
| terminates(v) (i.e. observe the final value)
| diverges
| goeswrong

What about 1/0?

« Add a trace of input-output events performed:

t
coind. T

1 | e:t (finite traces)
1 | exT (finite and infinite traces)

observable behavior ::=
| terminates(t, st) (end in state st after trace t)
| diverges(T) (loop, producing trace T)
| goeswrong(t)

Examples

P1:
print(1); /st = terminates(out(1)::{],st)
P2:
print(1l); print(2); /st
= terminates(out(1)::out(2)::[],st)
P3:
WHILE true DO print(l) END /st
= diverges(out(1)::out(1)::...)

So B((P1) # B(P2) # B(P3)

Bisimulation

* Two programs P1 and P2 are bisimilar whenever:

B(P1) = B(P2)

« The two programs are completely indistinguishable.

 But... this is often too strong in practice.

Compilation Reduces Nondeterminism

« Some languages (like C) have underspecified behaviors:
— Example: order of evaluation of expressions () + g()

« Concurrent programs often permit nondeterminism
— Classic optimizations can reduce this nondeterminism

— Example:
a:=x+1;bi=x+1 || X 1= X+1
VS.
a:=x+1;b:=a | X 1= X+1

* LLVM explicitly allows nondeterminism:
— undef values (not part of LLVM lite)
— see the discussion later

Backward Simulation

Program P2 can exhibit fewer behaviors than P1:

BP1) =2 XB(P2)

All of the behaviors of P2 are permitted by P1, though some of them
may have been eliminated.

Also called refinement.

What about goeswrong?

« Compilers often translate away bad behaviors.

X:=1/ly,; x:=42 VS. X =42
(divide by O error) (always terminates)

e Justifications:

— Compiled program does not “go wrong” because the program type checks
or is otherwise formally verified

— Or just “garbage in/garbage out”

Safe Backwards Simulation

Only require the compiled program’s behaviors to agree if the source
program could not go wrong:

goeswrong(t) & B(P1) = B(P1) 2 XH(P2)

Idea: let S be the functional specification of the program:
A set of behaviors not containing goeswrong(t).

— A program P satisfies the spec if 5(P) € S

Lemma: If P2 is a safe backwards simulation of P1 and P1 satisfies the
spec, then P2 does too.

Building Backward Simulations

out(1)

Source: O, >0,
A AN
i e
i ,/’, ,', i
1 »7 U 1

Cl-1|: S CH

i -~ /]
: :

Vi out(1) |V

Target: T, T >T, > T,

ldea: The event trace along a (target) sequence of steps originating
from a compiled program must correspond to some source sequence.
Tricky parts:

- Must consider all possible target steps

- If the compiler uses many target steps for once source step, we have
invent some way of relating the intermediate states to the source.

- the compilation function goes the wrong way to help!

Safe Forwards Simulation

Source program’s behaviors are a subset of the target’s:

goeswrong(t) & B(P1) = B(P1) S KHB(P2)

P2 captures all the good behaviors of P1, but could exhibit more
(possibly bad) behaviors.

But: Forward simulation is significantly easier to prove:
— Only need to show the existence of a compatible target trace.

Determinism!

Lemma: If P2 is deterministic then forward simulation implies
backward simulation.

Proof: @ C »(P1) & B((P2)= {b} so B(P1)={b].

Corollary: safe forward simulation implies safe backward simulation if
P2 is deterministic.

Forward Simulations

Source: O,

\4
Q
\9)

[—

&
Q
Sl

Target: Clo,] - > g, —--- >, >

Idea: Show that every transition in the source program:
- is simulated by some sequence of transitions in the
target
- while preserving a relation ~ between the states

Lock-step Forward Simulation

Source: O, >0,

Target: Clo,] --------m-mmmmmm s > Clo,]

A single source-program step is simulated by a single target
step.

(Solid = assumptions, Dashed = must be shown)

“Plus”-step Forward Simulation

Source: O, >0,

Target: Clo,] - > {5 >, > T

A single source-program step is simulated by one or more
target steps. (But only finitely many!)

(Solid = assumptions, Dashed = must be shown)

Optional Forward Simulation

Source: o >0,

P d
-
-
-
-
-
P d
-
-
-
-
-
-
-
-
-
-
f’
-

-
-
-
-
-
-
P d
-
-
-
-
P
P d
-
-
-
f’
o

Target: Clo|]

A single source-program step is simulated by zero steps in the
target.

Problem with “Infinite Stuttering”

Source: oO,—>0,—>0;—>0,— >0 "

Target: Clo,]

An infinite sequence of source transitions can be “simulated”
by 0 transitions in the target!

(This simulation doesn’t preserve nontermination.)

Solution: Disallow such “trivial” simulations

Source: O, >0,

-
-
-
-~
-
P
-
P
-
-
-~
-
/’
-~

’/
’/
-

>
-
-
-
P
P
>
P
-
-
-
-
P
-~
P
P
f’
”

Target: Clo,]

Equip the source language with a measure |o| and require that
05| <oyl

The measure can’t decrease indefinitely, so the target program
must either take a step or the source must terminate.

The target diverges if the source program does.

Is Backward Simulation Hopeless?

Suppose the source & target languages are the same.
— So they share the same definition of program state.
Further suppose that the steps are very “small”.
— Abstract machine (i.e. no “complex” instructions).
Further suppose that “compilation” is only a very minor change.
— add or remove a single instruction
— substitute a value for a variable

Then: backward simulation is more achievable

— it’s easier to invent the “decompilation” function because the
“compilation” function is close to trivial

Happily: This is the situation for many LLVM optimizations

Lock-Step Backward Simulation

—
v T—

0 is either an “observable event” or a “silent event”
onx=ele

Example use: proving variable substitution correct.

Right-Option Backward Simulation

S L S) S e S)
e o« | A
o _
T > T, T
So| <1841

* Either:
— the source and target are in lock-step simulation.

Or

— the source takes a silent transition to a smaller state

Example use: removing an instruction in the target.

Left-Option Backward Simulation

S L S) S
~ i ~ OR ~ \\\\\\W
o _ g
T > T, T, > 1,
I'______________'i
ol <|Tq]

e FEither:

— the source and target are in lock-step simulation.
Or

— the target takes a silent transition to a smaller state

Example use: adding an instruction to the target.

Verifying optimizations at the LLVM level of abstraction.

EXAMPLE: VELLVM

Zdancewic CIS 341: Compilers 27

Step 1: Define LLVM IR Semantics

 Essentially: define an interpreter for LLVM IR code

« But: more complex than the LLVMIite we use in class
— Aggregate / Structured data
— Undefined behaviors
— Nondeterminism

« So: can’t be just an interpreter
— Semantics is given by a relation

Zdancewic CIS 341: Compilers

28

Other Parts of the LLVM IR

op ::= %uid | constant | undef
bop ::= add | sub | mul | shl |
cmpop ::= eq | ne | slt | sle |

insn ::=
| %uid = alloca ty
| %uid = load ty opl
| store ty opl, op2
| %uid = getelementptr ty opl ..
| %uid = call rt fun(..args..)
|

phi ::=
| &é[opl;lbll]...[opn;1lbln]

terminator ::=
| ret %ty op
| br op label %1bll, label %1bl2
| br label %1bl

Operands
Operations
Comparison

Stack Allocation
Load

Store

Address Calculation
Function Calls

29

Sources of Undefined Behavior

Target-dependent Results

Uninitialized variables:

v = add i32 %x, undef

Uninitialized memory:

$ptr = alloca 132
v = load (i32*) %ptr

lll-typed memory usage

Fatal Errors

Out-of-bounds accesses
Access dangling pointers
Free invalid pointers

Invalid indirect calls

Nondeterminism

]

Sources of Undefined Behavior

Target-dependent Results

Uninitialized variables:

add i32 %x, undef

o) —
SV =

Uninitialized memory:

$ptr = alloca i32
v = load (i32*) %ptr

lll-typed memory usage

Nondeterminism

Defined by a predicate on
the program configuration.

A program configuration is
stuck if there is no transition
it can make.

Stuck(f, o) = BadFree(f, o)
¥ BadLoad(f, o)
¥ BadStore(f, o)

v

\4

LLVM’s memory model

$ST = type {110,[10 x 18*]}

High-level « Manipulate structured types.
Representation

110

gval = load %ST* %ptr

store 3IST* Iptr, %new

High-level
Representation
i10
i8*

LLVM’s memory model

type {110,[10 x 18*]}

Low-level

b(10, 136)

b(10, 2)

uninit

uninit

ptr(Blk32,0,0

ptr(Blk32,0,1

tr(Blk32,0,2

e

e

tr(B1k32,8,0

e

ptr(Blk32,8,1

()
()
()
tr(B1k32,0,3)
()
()
()

ptr(Blk32,8,2

ptr(Blk32,8,3)

Representation

0

1

2

N — RN o -

Manipulate structured types.
gval = load %ST* %ptr

store 3IST* Iptr, %new
Semantics is given in terms of
byte-oriented low-level memory.
— padding & alignment
— physical subtyping

Adapting CompCert’s Memory Model

0 Blk1

b(10, 136)

b(10, 2)

uninit

uninit

ptr(Blk32,0,0

ptr(Blk32,0,1

ptr(Blk32,0,2

ptr(Blk32,8,0

ptr(Blk32,8,1

()
()
()
ptr(Blk32,0,3)
()
()
()

ptr(Blk32,8,2

ptr(Blk32,8,3)

Data lives in blocks

Represent pointers abstractly
— block + offset

Deallocate by invalidating blocks

Allocate by creating new blocks
— infinite memory available

Dynamic Physical Subtyping

[Nita, et al. POPL
‘08]

BlkO Blk1 Blk32

load ilé6

il0
uninit

uninit

uninit

uninit

uninit

load il6* X

uninit

: N = - = o = © o] ~N)] S S w N —_ (@]

undef

* What is the value of %y after running the
following?

X = or 18 undef, 1
y XOor 18 %X %X

o° oV©

* One plausible answer: 0
* Not LLVM'’s semantics!

(LLVM is more liberal to permit more aggressive optimizations)

undef

Partially defined values are interpreted
nondeterministically as sets of possible values:

o

X = or 18 undef, 1
y = XOor 18 %$x %X

o©

[18 undef] = {0,..,255}
[18 1] = {1}

[¢x] = {a or b | ac[i8 undef], b €[1]}
- {1,3,5,..,255}

[3y] = {a_xor kb acl[%x], be[3x]}
“Q8.24 25D

Nondeterministic Branches

~

11:

~

\\ br undef 12 13 //

.

/i2: A /i2:
\ J \

LLVM,; Operational Semantics

« Define a transition relation:
f— o = 0,

— fis the program

— o is the program state: pc, locals(6), stack, heap
« Nondeterministic

— © maps local $uids to sets.

— Step relation is nondeterministic
* Mostly straightforward (given the heap model)

— Another wrinkle: phi-nodes executed atomically

Need for Atomic Phi-node Updates

blk:
$x = phi 132 [%z, %blk], [0, %$pred]
$z = phi 132 [%x, %blk], [1, %$pred]
b icmp leg %$x %z

br %$b %$blk %succ

Operational Semantics

- Small Step Big Step

Nondeterministic LLVMND

Deterministic

Deterministic Refinement

- Small Step Big Step

Nondeterministic LLVMND
W
Deterministic LLVMD

Instantiate ‘undef’” with default value (0 or null) = deterministic.

Big-step Deterministic Refinements

- Small Step Big Step

Nondeterministic LLVMND
W
Deterministic LLVMInterp = LLVMD

Bisimulation up to “observable events”:
 external function calls

Big-step Deterministic Refinements

- Small Step Big Step

Nondeterministic LLVMND
W
Deterministic | LLVM oy = LLVMp = LLVM pg, = LLVM

Simulation up to “observable events”:
 useful for encapsulating behavior of function calls
 large step evaluation of basic blocks

[Tristan, et al. POPL "08, Tristan, et al. PLDI
‘09]

