
CIS 341: COMPILERS
Lecture 26

Announcements

•  HW 7: Optimization & Experiments
–  Due: April 29th

•  Final Exam:

–  Thursday, May 7th
–  9:00AM
–  Moore 216

•  Visitor: Yaron Minsky of Jane St. Capital
–  Monday, April 27th
–  Lunch: noon – 1:15 (Raisler Lounge) sign-up sheet on Piazza
–  Talk: 2:00 – 3:00 (Raisler Lounge)���

From Theory into Practice: the story of Incremental

Zdancewic CIS 341: Compilers 2

COMPILER VERIFICATION

Zdancewic CIS 341: Compilers 3

���

Compiler Correctness?
•  We have to relate the source and target language semantics across the

compilation function C[-] : source ➞ target.

•  Is this enough?
•  What if cmd goes into an infinite loop?

cmd / st S⟼* SKIP / st’ ���

 iff

C[cmd] / C[st] T⟼* C[st’]

Comparing Behaviors
•  Consider two programs P1 and P2 possibly in different languages.

–  e.g. P1 is an Oat program, P2 is its compilation to LL

•  The semantics of the languages associate to each program a set of
observable behaviors:���

B(P) and B(P’)

•  Note: |B(P)| = 1 if P is deterministic, > 1 otherwise

What is Observable?
•  For C-like languages:���

 ���
 observable behavior ::= ���
 | terminates(st) (i.e. observe the final state)���
 | diverges ���
 | goeswrong

•  For pure functional languages:���
���
 observable behavior ::=���
 | terminates(v) (i.e. observe the final value)���
 | diverges���
 | goeswrong

What about I/O?
•  Add a trace of input-output events performed:���

���
 t ::= [] | e :: t (finite traces)���
 coind. T ::= [] | e :: T (finite and infinite traces)���
���
 observable behavior ::=���
 | terminates(t, st) (end in state st after trace t)���
 | diverges(T) (loop, producing trace T)���
 | goeswrong(t)

Examples
•  P1: ���

print(1); / st ⇒ terminates(out(1)::[],st)

•  P2: ���
print(1); print(2); / st ���
 ⇒ terminates(out(1)::out(2)::[],st)

•  P3:���
WHILE true DO print(1) END / st���
 ⇒ diverges(out(1)::out(1)::…)

•  So B(P1) ≠ B(P2) ≠ B(P3)

Bisimulation
•  Two programs P1 and P2 are bisimilar whenever:���

���
 B(P1) = B(P2)

•  The two programs are completely indistinguishable.

•  But… this is often too strong in practice.���

Compilation Reduces Nondeterminism
•  Some languages (like C) have underspecified behaviors:

–  Example: order of evaluation of expressions f() + g()

•  Concurrent programs often permit nondeterminism
–  Classic optimizations can reduce this nondeterminism
–  Example: ���

 a := x + 1; b := x + 1 || x := x+1
���

 vs.���
���
 a := x + 1; b := a || x := x+1

•  LLVM explicitly allows nondeterminism:
–  undef values (not part of LLVM lite)
–  see the discussion later

Backward Simulation
•  Program P2 can exhibit fewer behaviors than P1: ���

���
 B(P1) ⊇ B(P2)

•  All of the behaviors of P2 are permitted by P1, though some of them
may have been eliminated.

•  Also called refinement.

What about goeswrong?
•  Compilers often translate away bad behaviors.���

 x := 1/y ; x := 42 vs. x := 42���
 (divide by 0 error) (always terminates)

•  Justifications:

–  Compiled program does not “go wrong” because the program type checks
or is otherwise formally verified

–  Or just “garbage in/garbage out”

Safe Backwards Simulation
•  Only require the compiled program’s behaviors to agree if the source

program could not go wrong:���
 ���
 goeswrong(t) ∉ B(P1) ⇒ B(P1) ⊇ B(P2)

•  Idea: let S be the functional specification of the program:���
A set of behaviors not containing goeswrong(t).
–  A program P satisfies the spec if B(P) ⊆ S

•  Lemma: If P2 is a safe backwards simulation of P1 and P1 satisfies the
spec, then P2 does too.

Building Backward Simulations

Source:

Target:

σ1 σ2

τ1 τ2 τ3 τn

C[-]

…

C[-]

Idea: The event trace along a (target) sequence of steps originating
from a compiled program must correspond to some source sequence.
Tricky parts: ���

 - Must consider all possible target steps���
 - If the compiler uses many target steps for once source step, we have
 invent some way of relating the intermediate states to the source.���

 - the compilation function goes the wrong way to help!

out(1)

out(1)

Safe Forwards Simulation
•  Source program’s behaviors are a subset of the target’s:���

 ���
 goeswrong(t) ∉ B(P1) ⇒ B(P1) ⊆ B(P2)

•  P2 captures all the good behaviors of P1, but could exhibit more
(possibly bad) behaviors.

•  But: Forward simulation is significantly easier to prove:
–  Only need to show the existence of a compatible target trace.���

Determinism!
•  Lemma: If P2 is deterministic then forward simulation implies

backward simulation.

•  Proof: ∅ ⊂ B(P1) ⊆ B(P2) = {b} so B(P1) = {b}.

•  Corollary: safe forward simulation implies safe backward simulation if
P2 is deterministic.

Forward Simulations

Source:

Target:

σ1 σ2

C[σ1] τ2 τ3
…

Idea: Show that every transition in the source program:
 - is simulated by some sequence of transitions in the
target
 - while preserving a relation ~ between the states

C[σ2]

~ ~

Lock-step Forward Simulation

Source:

Target:

σ1 σ2

C[σ1]

A single source-program step is simulated by a single target
step.

(Solid = assumptions, Dashed = must be shown)

C[σ2]

~ ~

“Plus”-step Forward Simulation

Source:

Target:

σ1 σ2

C[σ1]

A single source-program step is simulated by one or more
target steps. (But only finitely many!)

(Solid = assumptions, Dashed = must be shown)

~ ~

τ0 τ1 τn …

Optional Forward Simulation

Source:

Target:

σ1 σ2

C[σ1]

A single source-program step is simulated by zero steps in the
target.

~ ~

Problem with “Infinite Stuttering”

Source:

Target:

σ1 σ2

C[σ1]

An infinite sequence of source transitions can be “simulated”
by 0 transitions in the target!

(This simulation doesn’t preserve nontermination.)

~ ~

σ3 σ4 σ5 …

~ ~ ~

Solution: Disallow such “trivial” simulations

Source:

Target:

σ1 σ2

C[σ1]

~ ~

Equip the source language with a measure |σ| and require that
|σ2| < |σ1|.

The measure can’t decrease indefinitely, so the target program
must either take a step or the source must terminate.

The target diverges if the source program does.

|σ2| < |σ1|

Is Backward Simulation Hopeless?
•  Suppose the source & target languages are the same.

–  So they share the same definition of program state.

•  Further suppose that the steps are very “small”.
–  Abstract machine (i.e. no “complex” instructions).

•  Further suppose that “compilation” is only a very minor change.
–  add or remove a single instruction
–  substitute a value for a variable

•  Then: backward simulation is more achievable
–  it’s easier to invent the “decompilation” function because the

“compilation” function is close to trivial

•  Happily: This is the situation for many LLVM optimizations

Lock-Step Backward Simulation

S1 S2

T1 T2

~
o

o

~

o is either an “observable event” or a “silent event”
o ::= e | ε

Example use: proving variable substitution correct.

Right-Option Backward Simulation

•  Either:
–  the source and target are in lock-step simulation.

 Or
–  the source takes a silent transition to a smaller state

S1 S2

T1 T2

~
o

o

~
S1 S2

T1

~

ε

~ OR

|S2| < |S1|

Example use: removing an instruction in the target.

Left-Option Backward Simulation

•  Either:
–  the source and target are in lock-step simulation.

 Or
–  the target takes a silent transition to a smaller state

S1 S2

T1 T2

~
o

o

~ OR

|T2| < |T1|

Example use: adding an instruction to the target.

S1

T1 T2

~
ε

~

EXAMPLE: VELLVM

Zdancewic CIS 341: Compilers 27

Verifying optimizations at the LLVM level of abstraction.
���

Step 1: Define LLVM IR Semantics
•  Essentially: define an interpreter for LLVM IR code

•  But: more complex than the LLVMlite we use in class
–  Aggregate / Structured data
–  Undefined behaviors
–  Nondeterminism

•  So: can’t be just an interpreter
–  Semantics is given by a relation

Zdancewic CIS 341: Compilers 28

Other Parts of the LLVM IR

29

op ::= %uid | constant | undef Operands
bop ::= add | sub | mul | shl | … Operations
cmpop ::= eq | ne | slt | sle | … Comparison

insn ::=
 | %uid = alloca ty Stack Allocation
 | %uid = load ty op1 Load
 | store ty op1, op2 Store
 | %uid = getelementptr ty op1 … Address Calculation
 | %uid = call rt fun(…args…) Function Calls
 | …

phi ::=
 | φ[op1;lbl1]...[opn;lbln]

terminator ::=
 | ret %ty op
 | br op label %lbl1, label %lbl2
 | br label %lbl

Fatal Errors Target-dependent Results

Sources of Undefined Behavior

•  Uninitialized variables:

•  Uninitialized memory:

•  Ill-typed memory usage

•  Out-of-bounds accesses

•  Access dangling pointers

•  Free invalid pointers

•  Invalid indirect calls

%v = add i32 %x, undef

%ptr = alloca i32
%v = load (i32*) %ptr

Nondeterminism Stuck States

Sources of Undefined Behavior

Stuck(f, σ) = BadFree(f, σ)
 ˅ BadLoad(f, σ)
 ˅ BadStore(f, σ)
 ˅ …
 ˅ …

Defined by a predicate on
the program configuration.

A program configuration is ���
stuck if there is no transition
it can make.

Target-dependent Results

%v = add i32 %x, undef

%ptr = alloca i32
%v = load (i32*) %ptr

•  Uninitialized variables:

•  Uninitialized memory:

•  Ill-typed memory usage

Nondeterminism Stuck States

LLVM’s memory model

•  Manipulate structured types.

%ST = type {i10,[10 x i8*]}

i10

i8*

i8*

i8*

i8*

i8*

i8*

i8*

i8*

i8*

i8*

High-level���
Representation

%val = load %ST* %ptr
…
store %ST* %ptr, %new

LLVM’s memory model

•  Manipulate structured types.

•  Semantics is given in terms of
byte-oriented low-level memory.
–  padding & alignment
–  physical subtyping

%ST = type {i10,[10 x i8*]}

b(10, 136) 0

b(10, 2) 1

uninit 2

uninit 3

ptr(Blk32,0,0) 4

ptr(Blk32,0,1) 5

ptr(Blk32,0,2) 6

ptr(Blk32,0,3) 7

ptr(Blk32,8,0) 8

ptr(Blk32,8,1) 9

ptr(Blk32,8,2) 1
0

ptr(Blk32,8,3) 1
1

… 1
2

… …

i10

i8*

i8*

i8*

i8*

i8*

i8*

i8*

i8*

i8*

i8*

High-level���
Representation

Low-level���
Representation

%val = load %ST* %ptr
…
store %ST* %ptr, %new

Adapting CompCert’s Memory Model

b(10, 136) 0

b(10, 2) 1

uninit 2

uninit 3

ptr(Blk32,0,0) 4

ptr(Blk32,0,1) 5

ptr(Blk32,0,2) 6

ptr(Blk32,0,3) 7

ptr(Blk32,8,0) 8

ptr(Blk32,8,1) 9

ptr(Blk32,8,2) 1
0

ptr(Blk32,8,3) 1
1

… 1
2

… …

•  Data lives in blocks
•  Represent pointers abstractly

–  block + offset

•  Deallocate by invalidating blocks
•  Allocate by creating new blocks

–  infinite memory available

Blk0 Blk1 ✗

Dynamic Physical Subtyping

b(10, 136) 0

b(10, 2) 1

uninit 2

uninit 3

ptr(Blk32,0,0) 4

ptr(Blk32,0,1) 5

ptr(Blk32,0,2) 6

ptr(Blk32,0,3) 7

ptr(Blk32,8,0) 8

ptr(Blk32,8,1) 9

ptr(Blk32,8,2) 1
0

ptr(Blk32,8,3) 1
1

… 1
2

… …

Blk0 Blk1 Blk32

b(16, 1) 0

b(16, 0) 1

uninit 2

uninit 3

uninit 4

uninit 5

uninit 6

uninit 7

ptr(Blk1,0,0) 8

ptr(Blk1,0,1) 9

ptr(Blk1,0,2) 1
0

ptr(Blk1,0,3) 1
1

… 1
2

… …

i10

load i16*  
⇒ 1 ✓

load i16*  
⇒ undef

✗

[Nita, et al. POPL
’08]

undef
•  What is the value of %y after running the

following?

•  One plausible answer: 0
•  Not LLVM’s semantics!���

 (LLVM is more liberal to permit more aggressive optimizations)

%x = or i8 undef, 1
%y = xor i8 %x %x

undef
•  Partially defined values are interpreted

nondeterministically as sets of possible values:

⟦%x⟧ = {a or b | a∈⟦i8 undef⟧, b ∈⟦1⟧}  
= {1,3,5,…,255}

⟦%y⟧ = {a xor b | a∈⟦%x⟧, b∈⟦%x⟧}
= {0,2,4,…,254}

%x = or i8 undef, 1
%y = xor i8 %x %x

⟦i8 undef⟧ = {0,…,255}
⟦i8 1⟧ = {1}

Nondeterministic Branches

l1:
 …
 …
 …

 br undef l2 l3

l2:
 …
 …
 …

l2:
 …
 …
 …

?

LLVMND Operational Semantics
•  Define a transition relation:

f ⊢ σ1 ⟼ σ2

–  f is the program
–  σ is the program state: pc, locals(δ), stack, heap

•  Nondeterministic
–  δ maps local %uids to sets.
–  Step relation is nondeterministic

•  Mostly straightforward (given the heap model)
–  Another wrinkle: phi-nodes executed atomically

Need for Atomic Phi-node Updates

blk:
 %x = phi i32 [%z, %blk], [0, %pred]
 %z = phi i32 [%x, %blk], [1, %pred]
 %b = icmp leq %x %z
 br %b %blk %succ

Operational Semantics

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

Deterministic Refinement

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

LLVMD
∋
︎

Instantiate ‘undef’ with default value (0 or null) ⇒ deterministic.

Big-step Deterministic Refinements

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

LLVMD LLVMInterp ≈︎
∋
︎

Bisimulation up to “observable events”:
•  external function calls

Big-step Deterministic Refinements

[Tristan, et al. POPL ’08, Tristan, et al. PLDI
’09]

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

LLVMD LLVM*
DFn LLVM*

DB LLVMInterp ≈︎ ≿︎ ≿︎
∋
︎

Simulation up to “observable events”:
•  useful for encapsulating behavior of function calls
•  large step evaluation of basic blocks

