
CIS 341: COMPILERS
Lecture 1

Administrivia
•  Instructor: Steve Zdancewic �

Office hours: Tuesdays 4:00-5:00 & by appointment�
 Levine 511

•  TAs:
–  Dmitri Garbuzov
–  Richard Zhang
–  JJ Lee
–  Vivek Raj

•  Office hours: To be determined

•  E-mail: cis341@seas.upenn.edu
•  Web site: http://www.seas.upenn.edu/~cis341
•  Piazza: http://piazza.com/upenn/spring2017/cis341

Zdancewic					CIS	341:	Compilers					 2	

Why CIS 341?
•  You will learn:

–  Practical applications of theory
–  Lexing/Parsing/Interpreters
–  How high-level languages are implemented in �

machine language
–  (A subset of) Intel x86 architecture
–  More about common compilation tools like GCC and LLVM
–  A deeper understanding of code
–  A little about programming language semantics & types
–  Functional programming in OCaml
–  How to manipulate complex data structures
–  How to be a better programmer

•  Expect this to be a very challenging, implementation-
oriented course.
–  Programming projects can take tens of hours per week…

Zdancewic					CIS	341:	Compilers					 3	

The CIS341 Compiler
•  Course projects

–  HW1: OCaml Programming
–  HW2: X86lite interpreter
–  HW3: LLVMlite compiler
–  HW4: Lexing, Parsing, simple compilation
–  HW5: Higher-level Features
–  HW6: Analysis and Optimizations I
–  HW7: Optimizations II

•  Goal: build a complete compiler from a high-level, type-safe language
to x86 assembly.

Zdancewic					CIS	341:	Compilers					 4	

*HW 4 – 7 are undergoing a re-design this semester, so they’re a bit in flux.

Resources
•  Course textbook: (recommended, not required)

–  Modern compiler implementation in ML �
(Appel)

•  Additional compilers books:
–  Compilers – Principles, Techniques & Tools �

(Aho, Lam, Sethi, Ullman)
•  a.k.a. “The Dragon Book”

–  Advanced Compiler Design & Implementation �
(Muchnick)

•  About Ocaml:
–  Real World Ocaml�

(Minsky, Madhavapeddy, Hickey)
•  realworldocaml.org

–  Introduction to Objective Caml�
(Hickey)

Zdancewic					CIS	341:	Compilers					 5	

Why OCaml?
•  OCaml is a dialect of ML – “Meta Language”

–  It was designed to enable easy �
manipulation abstract syntax trees

–  Type-safe, mostly pure, functional �
language with support for polymorphic �
(generic) algebraic datatypes, modules,�
and mutable state

–  The OCaml compiler itself is well engineered
•  you can study its source!

–  It is the right tool for this job

•  Forgot about OCaml after CIS120?
–  Next couple lectures will (re)introduce it
–  First two projects will help you get up to speed programming
–  See “Introduction to Objective Caml” by Jason Hickey

•  book available on the course web pages, referred to in HW1

Zdancewic					CIS	341:	Compilers					 6	

HW1: Hellocaml
•  Homework 1 is available on the course web site.

–  Individual project – no groups
–  Due: Thursday, 19 Jan. 2013 at 11:59pm
–  Topic: OCaml programming, an introduction

•  OCaml head start on eniac:
–  Run “ocaml” from the command line to invoke the top-level loop
–  Run “ocamlbuild main.native” to run the compiler

•  We recommend using:
–  Emacs/Vim + merlin
–  (less recommended: Eclipse with the OcaIDE plugin)

–  See the course web pages about the CIS341 tool chain to get started

Zdancewic					CIS	341:	Compilers					 7	

Homework Policies
•  Homework (except HW1) may be done individually or in pairs
•  Late projects:

–  up to 24 hours late: 15 point penalty
–  up to 48 hours late: 30 point penalty
–  after 48 hours: not accepted

•  Submission policy:
–  Projects that don’t compile will get no credit
–  Partial credit will be awarded according to the guidelines in the project

description

•  Academic integrity: don’t cheat
–  This course will abide by the University’s Code of Academic Integrity
–  “low level” and “high level” discussions across groups are fine
–  “mid level” discussions / code sharing are not permitted
–  General principle: When in doubt, ask!

Zdancewic					CIS	341:	Compilers					 8	

Course Policies
Prerequisites: CIS121 and CIS240 (262 useful too!)

–  Significant programming experience
–  If HW1 is a struggle, this class might not be a good fit for you�

(HW1 is significantly simpler than the rest…)

Grading:
•  70% Projects: Compiler

–  Groups of 1 or 2 students
–  Implemented in OCaml

•  12% Midterm
•  18% Final exam

•  Lecture attendance is crucial
•  No laptops (or other devices)!

–  It’s too distracting for me and for others in the class.

Zdancewic					CIS	341:	Compilers					 9	

COMPILERS

What is a compiler?

Zdancewic					CIS	341:	Compilers					 10	

What is a Compiler?
•  A compiler is a program that translates from one programming

language to another.
•  Typically: high-level source code to low-level machine code �

(object code)
–  Not always: Source-to-source translators, Java bytecode compiler, GWT

Java ⇒ Javascript

Zdancewic					CIS	341:	Compilers					 11	

High-level	Code	

Low-level	Code	

?	

Historical Aside
•  This is an old problem!
•  Until the 1950’s: computers were programmed

in assembly.
•  1951—1952: Grace Hopper developed �

the A-0 system for the UNIVAC I
–  She later contributed significantly �

to the design of COBOL

•  1957: the FORTRAN compiler was built �
at IBM
–  Team led by John Backus

•  1960’s: development of the first �
bootstrapping compiler for LISP

•  1970’s: language/compiler design blossomed

•  Today: thousands of languages (most little used)
–  Some better designed than others...

Zdancewic					CIS	341:	Compilers					 12	

1980s:	ML	/	LCF	
1984:	Standard	ML	
1987:	Caml	
1991:	Caml	Light	
1995:	Caml	Special	Light	
1996:	ObjecLve	Caml	

Source Code
•  Optimized for human readability

–  Expressive: matches human ideas of grammar / syntax / meaning
–  Redundant: more information than needed to help catch errors
–  Abstract: exact computation possibly not fully determined by code

•  Example C source:

Zdancewic					CIS	341:	Compilers					 13	

#include <stdio.h> !
!
int factorial(int n) { !
 int acc = 1; !
 while (n > 0) { !
 acc = acc * n; !
 n = n - 1; !
 } !
 return acc; !
} !
!
int main(int argc, char *argv[]) { !
 printf("factorial(6) = %d\n", factorial(6)); !
}

Low-level code

•  Optimized for Hardware
–  Machine code hard for

people to read
–  Redundancy, ambiguity

reduced
–  Abstractions & information

about intent is lost

•  Assembly language
–  then machine language

•  Figure at right shows
(unoptimized) 32-bit code
for the factorial function

_factorial:
BB#0:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
movl 8(%ebp), %eax
movl %eax, -4(%ebp)
movl $1, -8(%ebp)

LBB0_1:
cmpl $0, -4(%ebp)
jle LBB0_3

BB#2:
movl -8(%ebp), %eax
imull -4(%ebp), %eax
movl %eax, -8(%ebp)
movl -4(%ebp), %eax
subl $1, %eax
movl %eax, -4(%ebp)
jmp LBB0_1

LBB0_3:
movl -8(%ebp), %eax
addl $8, %esp
popl %ebp
retl

Zdancewic					CIS	341:	Compilers					 14	

How to translate?
•  Source code – Machine code mismatch
•  Some languages are farther from machine code than others:

–  Consider: C, C++, Java, Lisp, ML, Haskell, Ruby, Python, Javascript

•  Goals of translation:
–  Source level expressiveness for the task
–  Best performance for the concrete computation
–  Reasonable translation efficiency (< O(n3))
–  Maintainable code
–  Correctness!

Zdancewic					CIS	341:	Compilers					 15	

Correct Compilation
•  Programming languages describe computation precisely…

–  therefore, translation can be precisely described
–  a compiler can be correct with respect to the source and target language

semantics.

•  Correctness is important!
–  Broken compilers generate broken code.
–  Hard to debug source programs if the compiler is incorrect.
–  Failure has dire consequences for development cost, security, etc.

•  This course: some techniques for building correct compilers
–  Finding and Understanding Bugs in C Compilers,�

Yang et al. PLDI 2011�

–  There is much ongoing research about proving compilers correct.�
(Google for CompCert, Verified Software Toolchain, or Vellvm)

Zdancewic					CIS	341:	Compilers					 16	

Idea: Translate in Steps
•  Compile via a series of program representations

•  Intermediate representations are optimized for program manipulation
of various kinds:
–  Semantic analysis: type checking, error checking, etc.
–  Optimization: dead-code elimination, common subexpression

elimination, function inlining, register allocation, etc.
–  Code generation: instruction selection

•  Representations are more machine specific, less language specific as
translation proceeds

Zdancewic					CIS	341:	Compilers					 17	

(Simplified) Compiler Structure

Zdancewic					CIS	341:	Compilers					 18	

Lexical	Analysis	

Parsing	

Intermediate	Code	
GeneraLon	

Code	GeneraLon	

Source	Code	
(Character	stream)	
if (b == 0) a = 0;

Token	Stream	

Abstract	Syntax	Tree	

Intermediate	Code	

Assembly	Code	
CMP ECX, 0  
SETBZ EAX

Front End
(machine independent)

Back End
(machine dependent)

Middle End
(compiler dependent)

Typical Compiler Stages
•  Lexing à token stream
•  Parsing à abstract syntax
•  Disambiguation à abstract syntax
•  Semantic analysis à annotated abstract syntax
•  Translation à intermediate code
•  Control-flow analysis à control-flow graph
•  Data-flow analysis à interference graph
•  Register allocation à assembly
•  Code emission

•  Optimizations may be done at many of these stages
•  Different source language features may require more/different stages

Zdancewic					CIS	341:	Compilers					 19	

Compilation & Execution

Zdancewic					CIS	341:	Compilers					 20	

Compiler	

Assembler	

Linker	

Loader	

Source	code

Executable	image

Assembly	Code

Object	Code

Fully-resolved	machine	Code

foo.c

gcc	-S

foo.s

as

foo.o

ld

foo

Library	code

(Usually:	gcc	-o	foo	foo.c)	

OCAML

Introduction to OCaml programming
A little background about ML
Interactive tour via the OCaml top-loop & Eclipse
Writing simple interpreters

Zdancewic					CIS	341:	Compilers					 21	

ML’s History
•  1971: Robin Milner starts the LCF Project at Stanford

–  “logic of computable functions”
•  1973: At Edinburgh, Milner implemented his �

theorem prover and dubbed it “Meta Language” – ML
•  1984: ML escaped into the wild and became �

“Standard ML”
–  SML ‘97 newest version of the standard
–  There is a whole family of SML compilers:

•  SML/NJ – developed at AT&T Bell Labs
•  MLton – whole program, optimizing compiler
•  Poly/ML
•  Moscow ML
•  ML Kit compiler
•  MLj – SML to Java bytecode compiler

•  ML 2000: failed revised standardization
•  sML: successor ML – discussed intermittently
•  2014: sml-family.org + definition on github

Zdancewic					CIS	341:	Compilers					 22	

OCaml’s History
•  The Formel project at the Institut National de

Rechereche en Informatique et en Automatique (INRIA)
•  1987: Guy Cousineau re-implemented a variant of ML

–  Implementation targeted the �
“Categorical Abstract Machine” (CAM)

–  As a pun, “CAM-ML” became “CAML”

•  1991: Xavier Leroy and Damien Doligez wrote �
Caml-light
–  Compiled CAML to a virtual machine with simple

bytecode (much faster!)

•  1996: Xavier Leroy, Jérôme Vouillon, and Didier Rémy
–  Add an object system to create OCaml
–  Add native code compilation

•  Many updates, extensions, since…
•  Microsoft’s F# language is a descendent of OCaml
•  2013: ocaml.org

Zdancewic					CIS	341:	Compilers					 23	

OCaml Tools
•  ocaml – the top-level interactive loop
•  ocamlc – the bytecode compiler
•  ocamlopt – the native code compiler
•  ocamldep – the dependency analyzer
•  ocamldoc – the documentation generator
•  ocamllex – the lexer generator
•  ocamlyacc – the parser generator

•  menhir – a more modern parser generator
•  ocamlbuild – a compilation manager
•  utop – a more fully-featured interactive top-level

•  opam – package manager

Zdancewic					CIS	341:	Compilers					 24	

Distinguishing Characteristics
•  Functional & (Mostly) “Pure”

–  Programs manipulate values rather than issue commands
–  Functions are first-class entities
–  Results of computation can be “named” using let
–  Has relatively few “side effects” (imperative updates to memory)

•  Strongly & Statically typed
–  Compiler typechecks every expression of the program, issues errors if it

can’t prove that the program is type safe
–  Good support for type inference & generic (polymorphic) types
–  Rich user-defined “algebraic data types” with pervasive use of �

pattern matching
–  Very strong and flexible module system for constructing large projects

Zdancewic					CIS	341:	Compilers					 25	

Most Important Features for CIS341
•  Types:

–  int, bool, int32, int64, char, string, built-in lists, tuples, records, functions

•  Concepts:
–  Pattern matching
–  Recursive functions over algebraic datatypes

•  Libraries:
–  Int32, Int64, List, Printf, Format

Zdancewic					CIS	341:	Compilers					 26	

INTERPRETERS

How to represent programs as data structures.
How to write programs that process programs.

Zdancewic					CIS	341:	Compilers					 27	

Factorial: Everyone’s Favorite Function
•  Consider this implementation of factorial in a hypothetical

programming language:

•  We need to describe the constructs of this hypothetical language
–  Syntax: which sequences of characters count as a legal “program”?
–  Semantics: what is the meaning (behavior) of a legal “program”?

Zdancewic					CIS	341:	Compilers					 28	

X = 6;
ANS = 1;
whileNZ (x) {

 ANS = ANS * X;
 X = X + -1;

}

Grammar for a Simple Language

•  Concrete syntax (grammar) for a simple imperative language
–  Written in “Backus-Naur form”
–  <exp> and <cmd> are nonterminals
–  ‘::=‘ , ‘|’ , and <…> symbols are part of the meta language
–  keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’ are part of the object language

•  Need to represent the abstract syntax (i.e. hide the irrelevant of the concrete syntax)
•  Implement the operational semantics (i.e. define the behavior, or meaning, of the program)

Zdancewic					CIS	341:	Compilers					 29	

<exp> ::=
 | <X>
 | <exp> + <exp>
 | <exp> * <exp>
 | <exp> < <exp>
 | <integer constant>
 | (<exp>)

<cmd> ::=
 | skip
 | <X> = <exp>
 | ifNZ <exp> { <cmd> } else { <cmd> }
 | whileNZ <exp> { <cmd> }
 | <cmd>; <cmd>

OCaml Demo

simple.ml

Zdancewic					CIS	341:	Compilers					 30	

