
CIS 341: COMPILERS
Lecture 1

Administrivia
•  Instructor: Steve Zdancewic �

Office hours: Tuesdays 4:00-5:00 & by appointment�
 Levine 511

•  TAs:
–  Dmitri Garbuzov
–  Richard Zhang
–  JJ Lee
–  Vivek Raj

•  Office hours: To be determined

•  E-mail: cis341@seas.upenn.edu
•  Web site: http://www.seas.upenn.edu/~cis341
•  Piazza: http://piazza.com/upenn/spring2017/cis341

Zdancewic					CIS	341:	Compilers					 2	

HW1: Hellocaml
•  Homework 1 is available on the course web site.

–  Individual project – no groups
–  Due: Thursday, 19 Jan. 2013 at 11:59pm
–  Topic: OCaml programming, an introduction

•  OCaml head start on eniac:
–  Run “ocaml” from the command line to invoke the top-level loop
–  Run “ocamlbuild main.native” to run the compiler

•  We recommend using:
–  Emacs/Vim + merlin
–  (less recommended: Eclipse with the OcaIDE plugin)

–  See the course web pages about the CIS341 tool chain to get started

Zdancewic					CIS	341:	Compilers					 3	

INTERPRETERS

How to represent programs as data structures.
How to write programs that process programs.

Zdancewic					CIS	341:	Compilers					 4	

Factorial: Everyone’s Favorite Function
•  Consider this implementation of factorial in a hypothetical

programming language:

•  We need to describe the constructs of this hypothetical language
–  Syntax: which sequences of characters count as a legal “program”?
–  Semantics: what is the meaning (behavior) of a legal “program”?

Zdancewic					CIS	341:	Compilers					 5	

X = 6;
ANS = 1;
whileNZ (x) {

 ANS = ANS * X;
 X = X + -1;

}

Grammar for a Simple Language

•  Concrete syntax (grammar) for a simple imperative language
–  Written in “Backus-Naur form”
–  <exp> and <cmd> are nonterminals
–  ‘::=‘ , ‘|’ , and <…> symbols are part of the meta language
–  keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’ are part of the object language

•  Need to represent the abstract syntax (i.e. hide the irrelevant of the concrete syntax)
•  Implement the operational semantics (i.e. define the behavior, or meaning, of the program)

Zdancewic					CIS	341:	Compilers					 6	

<exp> ::=
 | <X>
 | <exp> + <exp>
 | <exp> * <exp>
 | <exp> < <exp>
 | <integer constant>
 | (<exp>)

<cmd> ::=
 | skip
 | <X> = <exp>
 | ifNZ <exp> { <cmd> } else { <cmd> }
 | whileNZ <exp> { <cmd> }
 | <cmd>; <cmd>

OCaml Demo

simple.ml
translate.ml

Zdancewic					CIS	341:	Compilers					 7	

