
CIS 341: COMPILERS 
Lecture 12 



Announcements 
 

•  Reminder: HW3 LLVM backend 
–  Due: TONIGHT! 

•  Midterm Exam:  March 2nd in class! 
–  Coverage: x86 / calling conventions / IRs / LLVM / Lexing / Parsing 
–  Note: example exams covered more topics  
 
* Dr. Zdancewic will be out of town on the exam day 

•  HW4:  Parsing & basic code generation 
–  Available soon 
–  Due: After break 
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LL & LR PARSING 

Zdancewic     CIS 341: Compilers     3 

 
 
 
Searching for derivations. 
 
 
 
 



CFGs Mathematically 
•  A Context-free Grammar (CFG) consists of  

–  A set of terminals   (e.g., a token or ε) 
–  A set of nonterminals  (e.g., S and other syntactic variables) 
–  A designated nonterminal called the start symbol 
–  A set of productions:      LHS ⟼ RHS 

•  LHS is a nonterminal 
•  RHS is a string of terminals and nonterminals 

•  Example:   The balanced parentheses language: 
 
 
 
 
•  How many terminals?  How many nonterminals? Productions?�
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S ⟼ (S)S 

S ⟼ ε



Consider finding left-most derivations 
•  Look at only one input symbol at a time. 

Partly-derived String   Look-ahead  Parsed/Unparsed Input�
S       (    (1 + 2 + (3 + 4)) + 5�
⟼ E + S      (    (1 + 2 + (3 + 4)) + 5�
⟼ (S) + S     1    (1 + 2 + (3 + 4)) + 5�
⟼ (E + S) + S    1    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + S) + S    2    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + E + S) + S   2    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + S) + S   (    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + E) + S   (    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + (S)) + S   3    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + (E + S)) + S  3    (1 + 2 + (3 + 4)) + 5�
⟼ … 
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S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



There is a problem 
•  We want to decide which production�

to apply based on the look-ahead symbol. 
•  But, there is a choice:�

�
(1)   S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1) 

vs.�
(1) + 2  S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E   
          ⟼  (1) + 2 

 
•  Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick �

S ⟼ E      or    S ⟼ E + S   first. 
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S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



LL(1) GRAMMARS 
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Grammar is the problem 
•  Not all grammars can be parsed “top-down” with only a single 

lookahead symbol. 
•  Top-down: starting from the start symbol (root of the parse tree) and 

going down 

•  LL(1)    means    
–  Left-to-right scanning 
–  Left-most derivation,  
–  1 lookahead symbol 
 

•  This language isn’t “LL(1)” 
•  Is it LL(k) for some k? 

 
•  What can we do? 
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S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



Making a grammar LL(1) 
•  Problem: We can’t decide which S production to apply until we see 

the symbol after the first expression. 
•  Solution: “Left-factor” the grammar.  There is a common S prefix for 

each choice, so add a new non-terminal S’ at the decision point: 

•  Also need to eliminate left-recursion somehow.  Why? 
•  Consider: 
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S ⟼ E + S  |  E 
E ⟼ number | ( S ) 

S ⟼ S + E  |  E 
E ⟼ number | ( S ) 

S  ⟼ ES’ 
S’ ⟼ ε  
S’ ⟼ + S 
E  ⟼ number | ( S ) 



LL(1) Parse of the input string 
•  Look at only one input symbol at a time. 

 
Partly-derived String   Look-ahead  Parsed/Unparsed Input�

S       (    (1 + 2 + (3 + 4)) + 5�
⟼ E S’      (    (1 + 2 + (3 + 4)) + 5�
⟼ (S) S’      1    (1 + 2 + (3 + 4)) + 5�
⟼ (E S’) S’     1    (1 + 2 + (3 + 4)) + 5�
⟼ (1 S’) S’     +    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + S) S’     2    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + E S’) S’    2    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 S’) S’    +    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + S) S’    (    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + E S’) S’   (    (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + (S)S’) S’   3    (1 + 2 + (3 + 4)) + 5 
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S  ⟼ ES’ 
S’ ⟼ ε  
S’ ⟼ + S 
E  ⟼ number | ( S ) 



Predictive Parsing 
•  Given an LL(1) grammar: 

–  For a given nonterminal, the lookahead symbol uniquely determines the 
production to apply. 

–  Top-down parsing = predictive parsing 
–  Driven by a predictive parsing table:  �

   nonterminal * input token → production 

•  Note: it is convenient to add a special end-of-file token $ and a start 
symbol T (top-level) that requires $. 
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number + ( ) $ (EOF) 

T ⟼ S$ ⟼S$ 

S ⟼ E S’ ⟼E S’ 

S’ ⟼ + S ⟼ ε ⟼ ε 

E ⟼ num. ⟼ ( S ) 

T  ⟼ S$ 
S  ⟼ ES’ 
S’ ⟼ ε  
S’ ⟼ + S 
E  ⟼ number | ( S ) 



How do we construct the parse table? 
•  Consider a given production:   A à γ 
•  Construct the set of all input tokens  that may appear first in strings 

that can be derived from γ 
–  Add the production à γ to the entry (A,token) for each such token. 

•  If γ can derive ε (the empty string), then we construct the set of all 
input tokens that may follow the nonterminal A in the grammar. 
–  Add the production à γ to the entry (A, token) for each such token. 

•  Note: if there are two different productions for a given entry, the 
grammar is not LL(1) 
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Example 
•  First(T) = First(S) 
•  First(S) = First(E) 
•  First(S’) = { + } 
•  First(E) = { number, ‘(‘ } 

•  Follow(S’) = Follow(S) 
•  Follow(S) = { $, ‘)’ } ∪ Follow(S’) 
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number + ( ) $ (EOF) 

T ⟼ S$ ⟼S$ 

S ⟼ E S’ ⟼E S’ 

S’ ⟼ + S ⟼ ε ⟼ ε 

E ⟼ num. ⟼ ( S ) 

T  ⟼ S$ 
S  ⟼ ES’ 
S’ ⟼ ε  
S’ ⟼ + S 
E  ⟼ number | ( S ) 

Note: we want the least 
solution to this system of set 
equations… a fixpoint 
computation.  More on 
these later in the course. 



Converting the table to code 
•  Define n mutually recursive functions 

–  one for each nonterminal A:  parse_A 
–  The type of parse_A is unit -> ast if A is not an auxiliary nonterminal 
–  Parse functions for auxiliary nonterminals (e.g. S’)  take extra ast’s as 

inputs, one for each nonterminal in the “factored” prefix. 

•  Each function “peeks” at the lookahead token and then follows the 
production rule in the corresponding entry. 
–  Consume terminal tokens from the input stream 
–  Call parse_X to create sub-tree for nonterminal X 
–  If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s. 

(The auxiliary rule is responsible for creating the ast after looking at more 
input.) 

–  Otherwise, this function builds the ast tree itself and returns it. 
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DEMO: PARSER.ML 
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Hand-generated LL(1) code for the table above. 
 
 
 
 

number + ( ) $ (EOF) 

T ⟼ S$ ⟼S$ 

S ⟼ E S’ ⟼E S’ 

S’ ⟼ + S ⟼ ε ⟼ ε 

E ⟼ num. ⟼ ( S ) 



LL(1) Summary 
•  Top-down parsing that finds the leftmost derivation. 
•  Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser 

•  Problems:  
–  Grammar must be LL(1) 
–  Can extend to LL(k)  (it just makes the table bigger) 
–  Grammar cannot be left recursive (parser functions will loop!) 

•  Is there a better way? 
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LR GRAMMARS 
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Bottom-up Parsing  (LR Parsers) 
•  LR(k) parser:   

–  Left-to-right scanning 
–  Rightmost derivation 
–  k lookahead symbols 

•  LR grammars are more expressive than LL 
–  Can handle left-recursive (and right recursive) grammars; virtually all 

programming languages 
–  Easier to express programming language syntax (no left factoring) 

•  Technique:  “Shift-Reduce” parsers 
–  Work bottom up instead of top down 
–  Construct right-most derivation of a program in the grammar 
–  Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.) 
–  Better error detection/recovery 
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Top-down vs. Bottom up 
•  Consider the left-�

recursive grammar: 
 

•  (1 + 2 + (3 + 4)) + 5 

•  What part of the�
tree must we �
know after scanning�
just (1 + 2 

•  In top-down, must�
be able to guess�
which productions�
to use… 
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Note: ‘(‘ has 
been scanned 
but not 
consumed.  
Processing it is 
still pending. 

 

S ⟼ S + E  |  E 
E ⟼ number | ( S ) 



Progress of Bottom-up Parsing 
Reductions      Scanned    Input Remaining 
(1 + 2 + (3 + 4)) + 5 ⟻        (1 + 2 + (3 + 4)) + 5 
(E + 2 + (3 + 4)) + 5 ⟻   (          + 2 + (3 + 4)) + 5 
(S + 2 + (3 + 4)) + 5 ⟻   (1      + 2 + (3 + 4)) + 5 
(S + E + (3 + 4)) + 5 ⟻   (1 + 2     + (3 + 4)) + 5 
(S + (3 + 4)) + 5 ⟻    (1 + 2     + (3 + 4)) + 5 
(S + (E + 4)) + 5 ⟻    (1 + 2 + (3    + 4)) + 5 
(S + (S + 4)) + 5 ⟻    (1 + 2 + (3    + 4)) + 5 
(S + (S + E)) + 5 ⟻    (1 + 2 + (3 + 4   )) + 5 
(S + (S)) + 5 ⟻     (1 + 2 + (3 + 4   )) + 5 
(S + E) + 5 ⟻     (1 + 2 + (3 + 4)   ) + 5 
(S) + 5 ⟻      (1 + 2 + (3 + 4)   ) + 5 
E + 5 ⟻      (1 + 2 + (3 + 4))   + 5  
S + 5 ⟻      (1 + 2 + (3 + 4))   + 5  
S + E ⟻      (1 + 2 + (3 + 4)) + 5            
S 
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S ⟼ S + E  |  E 
E ⟼ number | ( S ) 
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Shift/Reduce Parsing 
•  Parser state: 

–  Stack of terminals and nonterminals. 
–  Unconsumed input is a string of terminals 
–  Current derivation step is        stack + input 

•  Parsing is a sequence of shift and reduce operations: 
•  Shift: move look-ahead token to the stack 
•  Reduce: Replace symbols γ at top of stack with nonterminal X such 

that X ⟼ γ is a production.  (pop γ, push X) 
Stack      Input     Action 

         (1 + 2 + (3 + 4)) + 5       shift ( 
(           1 + 2 + (3 + 4)) + 5   shift 1 
(1              + 2 + (3 + 4)) + 5   reduce: E ⟼ number 
(E            + 2 + (3 + 4)) + 5   reduce: S ⟼ E 
(S              + 2 + (3 + 4)) + 5   shift + 
(S +                 2 + (3 + 4)) + 5   shift 2 
(S + 2                  + (3 + 4)) + 5    reduce: E ⟼ number 
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S ⟼ S + E  |  E 
E ⟼ number | ( S ) 



LR(0) GRAMMARS 
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Simple LR parsing with no look ahead. 
 
 
 
 



LR Parser States 
•  Goal: know what set of reductions are legal at any given point. 
•  Idea: Summarize all possible stack prefixes α as a finite parser state. 

–  Parser state is computed by a DFA that reads the stack σ. 
–  Accept states of the DFA correspond to unique reductions that apply. 

•  Example: LR(0) parsing 
–  Left-to-right scanning, Right-most derivation, zero look-ahead tokens 
–  Too weak to handle many language grammars (e.g. the “sum” grammar) 
–  But, helpful for understanding how the shift-reduce parser works. 
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Example LR(0) Grammar: Tuples 
•  Example grammar for non-empty tuples and identifiers: 

•  Example strings: 
–  x    
–  (x,y)    
–  ((((x)))) 
–  (x, (y, z), w) 
–  (x, (y, (z, w))) 
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S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 

Parse tree for: 
(x, (y, z), w) 

 

(    L    ) 

L    ,    S 

L    ,    S 

(    L    ) 

L    ,    S x 

S 

y 

S z 

w 

S 



Shift/Reduce Parsing 
•  Parser state: 

–  Stack of terminals and nonterminals. 
–  Unconsumed input is a string of terminals 
–  Current derivation step is        stack + input 

•  Parsing is a sequence of shift and reduce operations: 
•  Shift: move look-ahead token to the stack: e.g. 

Stack     Input       Action 
          (x,  (y, z), w)            shift ( 

(             x,  (y, z), w)      shift x 

•  Reduce: Replace symbols γ at top of stack with nonterminal X such 
that X ⟼ γ is a production.  (pop γ, push X): e.g. 

   Stack       Input       Action 
(x         ,  (y, z), w)       reduce S ⟼ id 
(S               ,  (y, z), w)       reduce L ⟼ S 
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S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 



Example Run 
Stack   Input     Action 

    (x,  (y, z), w)    shift ( 
(     x,  (y, z), w)    shift x 
(x     ,  (y, z), w)    reduce S ⟼ id 
(S     ,  (y, z), w)    reduce L ⟼ S 
(L     ,  (y, z), w)    shift , 
(L,    (y, z), w)    shift ( 
(L, (    y, z), w)     shift y 
(L, (y   , z), w)     reduce S ⟼ id 
(L, (S   , z), w)     reduce L ⟼ S 
(L, (L   , z), w)     shift , 
(L, (L,   z), w)     shift z 
(L, (L, z   ), w)     reduce S ⟼ id 
(L, (L, S   ), w)     reduce L ⟼ L, S 
(L, (L   ), w)     shift ) 
(L, (L)   , w)      reduce S ⟼ ( L ) 
(L, S   , w)      reduce L ⟼ L, S 
(L     , w)      shift , 
(L,    w)      shift w 
(L, w   )      reduce S ⟼ id 
(L, S   )      reduce L ⟼ L, S 
(L     )      shift ) 
(L)         reduce S ⟼ ( L ) 
S 
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S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 



Action Selection Problem 
•  Given a stack σ and a look-ahead symbol b, should the parser: 

–  Shift b onto the stack (new stack is σb) 
–  Reduce a production X ⟼ γ, assuming that σ = αγ  (new stack is αX)? 

•  Sometimes the parser can reduce but shouldn’t 
–  For example, X ⟼ ε can always be reduced 

•  Sometimes the stack can be reduced in different ways 

•  Main idea:  decide what to do based on a prefix α of the stack plus the 
look-ahead symbol. 
–  The prefix α is different for different possible reductions since in 

productions X ⟼ γ and Y ⟼ β, γ and β might have different lengths. 

•  Main goal: know what set of reductions are legal at any point. 
–  How do we keep track? 
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LR(0) States 
•  An LR(0) state is a set of items keeping track of progress on possible 

upcoming reductions. 
•  An LR(0) item is a production from the language with an extra 

separator “.” somewhere in the right-hand-side 

•  Example items:     S ⟼ .( L )     or   S ⟼ (. L)    or    L ⟼ S. 
•  Intuition: 

–  Stuff before the ‘.’ is already on the stack�
(beginnings of possible γ’s to be reduced) 

–  Stuff after the ‘.’ is what might be seen next 
–  The prefixes α are represented by the state itself 
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S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 



Constructing the DFA: Start state & Closure 
•  First step:  Add a new production   �

S’ ⟼ S$  to the grammar 
•  Start state of the DFA =  empty stack, �

so it contains the item:�
    S’ ⟼ .S$ 

•  Closure of a state: 
–  Adds items for all productions whose LHS nonterminal occurs in an item 

in the state just after the ‘.’ 
–  The added items have the ‘.’ located at the beginning (no symbols for 

those items have been added to the stack yet) 
–  Note that newly added items may cause yet more items to be added to the 

state… keep iterating until a fixed point is reached. 

•  Example:  CLOSURE({S’ ⟼ .S$})  =  {S’ ⟼ .S$, S ⟼ .(L), S⟼.id} 

•  Resulting “closed state” contains the set of all possible productions 
that might be reduced next. 
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 



Example: Constructing the DFA 

•  First, we construct a state with the initial item S’ ⟼ .S$ 
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 

S’ ⟼ .S$ 



Example: Constructing the DFA 

•  Next, we take the closure of that state:�
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .( L ), S ⟼ .id} 

•  In the set of items, the nonterminal S appears after the ‘.’ 
•  So we add items for each S production in the grammar 
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 

S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id 



Example: Constructing the DFA 

•  Next we add the transitions: 
•  First, we see what terminals and 

nonterminals can appear after the 
‘.’ in the source state. 
–  Outgoing edges have those label. 

•  The target state (initially) includes 
all items from the source state that 
have the edge-label symbol after 
the ‘.’, but we advance the ‘.’  (to 
simulate shifting the item onto the 
stack) 
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 

S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id 

S ⟼ (. L ) 

S ⟼ id. 

S’ ⟼ S.$ 

id 

S 

( 



Example: Constructing the DFA 

•  Finally, for each new state, we take the closure. 
•  Note that we have to perform two iterations to compute 

CLOSURE({S ⟼ ( . L )}) 
–  First iteration adds L ⟼ .S and L ⟼ .L, S 
–  Second iteration adds S ⟼ .(L) and S ⟼ .id 
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S 

S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id 

S ⟼ (. L ) 
L ⟼ .S  
L ⟼ .L, S 
S ⟼ .(L) 
S ⟼ .id 

S ⟼ id. 

S’ ⟼ S.$ 

id 

S 

( 



Full DFA for the Example 
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S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id 

S ⟼ (. L ) 
L ⟼ .S  
L ⟼ .L, S 
S ⟼ .(L) 
S ⟼ .id 

S ⟼ id. L ⟼ L, . S 
S ⟼ .( L ) 
S ⟼ .id 

L ⟼ L, S. 

S ⟼ ( L .) 
L ⟼ L . , S 

S ⟼ ( L ). L ⟼ S. S’ ⟼ S.$ 

Done! 

id id S 
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) 
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id 

, 

Reduce state: ‘.’ at the 
end of the production 

•  Current state: run the�
   DFA on the stack. 

•  If a reduce state is �
   reached, reduce�
 
•  Otherwise, if the next�
  token matches an �
  outgoing edge, shift. 
 
•  If no such transition,�
  it is a parse error.  

1 2 

3 

4 

5 

6 7 

8 9 



Using the DFA 
•  Run the parser stack through the DFA. 
•  The resulting state tells us which productions might be 

reduced next. 
–  If not in a reduce state, then shift the next symbol and transition 

according to DFA. 
–  If in a reduce state, X ⟼ γ with stack αγ, pop γ and push X. 

•  Optimization: No need to re-run the DFA from beginning 
every step 
–  Store the state  with each symbol on the stack:  e.g. 1(3(3L5)6 

–  On a reduction X ⟼ γ, pop stack to reveal the state too:�
e.g.    From stack 1(3(3L5)6  reduce S ⟼ ( L ) to reach stack 1(3 

–  Next, push the reduction symbol: e.g. to reach stack 1(3S 
–  Then take just one step in the DFA to find next state: 1(3S7  
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Implementing the Parsing Table 
Represent the DFA as a table of shape: �

                      state * (terminals + nonterminals) 
•  Entries for the “action table” specify two kinds of actions: 

–  Shift and goto state n 
–  Reduce using reduction X ⟼ γ

•  First pop γ off the stack to reveal the state 
•  Look up X in the “goto table” and goto that state 
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Example Parse Table 
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( ) id , $ S L 

1 s3 s2 g4 

2 S⟼id S⟼id S⟼id S⟼id S⟼id 

3 s3 s2 g7 g5 

4 DONE 

5 s6 s8 

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) 

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S 

8 s3 s2 g9 

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S 

sx  = shift and goto state x 
gx  = goto state x 



Example 
•  Parse the token stream:  (x, (y, z), w)$ 

Stack    Stream    Action (according to table) 
ε1      (x, (y, z), w)$  s3
ε1(3    x, (y, z), w)$  s2 
ε1(3x2    , (y, z), w)$   Reduce: S⟼id 
ε1(3S    , (y, z), w)$   g7   (from state 3 follow S)  
ε1(3S7    , (y, z), w)$   Reduce: L⟼S 
ε1(3L    , (y, z), w)$   g5   (from state 3 follow L) 
ε1(3L5    , (y, z), w)$   s8 
ε1(3L5,8    (y, z), w)$   s3 
ε1(3L5,8(3   y, z), w)$   s2 
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LR(0) Limitations 
•  An LR(0) machine only works if states with reduce actions 

have a single reduce action. 
–  In such states, the machine always reduces (ignoring lookahead) 

•  With more complex grammars, the DFA construction will 
yield states with shift/reduce and reduce/reduce conflicts: 

    OK      shift/reduce          reduce/reduce 
 
 
 

•  Such conflicts can often be resolved by using a look-ahead 
symbol:  LR(1) 
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S ⟼ ( L ). S ⟼ ( L ). 
  L ⟼ .L , S 

   S ⟼ L ,S. 
S ⟼ ,S. 



Examples 
•  Consider the left associative and right associative “sum” grammars:  

    �
    left        right 

•  One is LR(0) the other isn’t…  which is which and why? 
•  What kind of conflict do you get?  Shift/reduce or Reduce/reduce? 

•  Ambiguities in associativity/precedence usually lead to shift/reduce 
conflicts.  
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S ⟼ S + E  |  E 
E ⟼ number | ( S ) 

S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



LR(1) Parsing 
•  Algorithm is similar to LR(0) DFA construction: 

–  LR(1) state = set of LR(1) items 
–  An LR(1) item is an LR(0) item + a set of look-ahead symbols:�

        A ⟼  α.β  ,  L 

•  LR(1) closure is a little more complex: 
•  Form the set of items just as for LR(0) algorithm. 
•  Whenever a new item C ⟼ .γ is added because A ⟼ β.Cδ , L    is 

already in the set, we need to compute its look-ahead set M: 
1. The look-ahead set M includes FIRST(δ) �

(the set of terminals that may start strings derived from δ) 
2. If δ can derive ε (it is nullable), then the look-ahead M also contains L
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Example Closure 

•  Start item:     S’ ⟼ .S$    ,   {}    
•  Since S is to the right of a ‘.’, add:   �

        S ⟼ .E + S    ,   {$}        Note: {$} is FIRST($)�
        S ⟼ .E          ,   {$} 

•  Need to keep closing, since E appears to the right of a ‘.’ in�
‘.E + S’:�
   E ⟼ .number ,   {+}     Note: + added for reason 1�
      E ⟼ .( S )       ,   {+}     

•  Because E also appears to the right of ‘.’ in ‘.E’ we get:�
   E ⟼ .number ,   {$}     Note: $ added for reason 2�
      E ⟼ .( S )       ,   {$}   

•  All items are distinct, so we’re done 
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S’ ⟼ S$ 
S ⟼ E + S  |  E 
E ⟼ number | ( S ) 



Using the DFA 

•  The behavior is determined if: 
–  There is no overlap among the�

look-ahead sets for each reduce �
item, and 

–  None of the look-ahead symbols�
appear to the right of a ‘.’ 
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S’ ⟼ .S$  {} 
S ⟼ .E + S  {$} 
S ⟼ .E   {$} 
E ⟼ .num  {+} 
E ⟼ .( S )  {+} 
E ⟼ .num  {$} 
E ⟼ .( S )  {$} 

S ⟼ E .+ S  {$} 
S ⟼ E.   {$} 

E 

1 

+ $ E 

1 g2 

2 s3 S ⟼ E 

2 
+ 

Fragment of the Action & Goto tables 

Choice between shift 
and reduce is resolved. 



LR variants 
•  LR(1) gives maximal power out of a 1 look-ahead symbol parsing table 

–  DFA + stack is a push-down automaton (recall 262) 
•  In practice, LR(1) tables are big. 

–  Modern implementations (e.g. menhir) directly generate code 

•  LALR(1)  = “Look-ahead LR” 
–  Merge any two LR(1) states whose items are identical except for the look-

ahead sets: 

–  Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but 
–  Results in a much smaller parse table and works well in practice 
–  This is the usual technology for automatic parser generators: yacc, ocamlyacc 

•  GLR = “Generalized LR” parsing 
–  Efficiently compute the set of all parses for a given input 
–  Later passes should disambiguate based on other context 
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S’ ⟼ .S$  {} 
S ⟼ .E + S  {$} 
S ⟼ .E  {$} 
E ⟼ .num  {+} 
E ⟼ .( S )  {+} 
E ⟼ .num  {$} 
E ⟼ .( S )  {$} 

S’ ⟼ .S$  {} 
S ⟼ .E + S  {$} 
S ⟼ .E  {$} 
E ⟼ .num  {+,$} 
E ⟼ .( S )  {+,$} 



Classification of Grammars 
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LR(0) 

SLR 

LALR(1) 

LR(1) 

LL(1) 


