
CIS 341: COMPILERS
Lecture 12

Announcements

•  Reminder: HW3 LLVM backend
–  Due: TONIGHT!

•  Midterm Exam: March 2nd in class!
–  Coverage: x86 / calling conventions / IRs / LLVM / Lexing / Parsing
–  Note: example exams covered more topics

* Dr. Zdancewic will be out of town on the exam day

•  HW4: Parsing & basic code generation
–  Available soon
–  Due: After break

Zdancewic CIS 341: Compilers 2

LL & LR PARSING

Zdancewic CIS 341: Compilers 3

Searching for derivations.

CFGs Mathematically
•  A Context-free Grammar (CFG) consists of

–  A set of terminals (e.g., a token or ε)
–  A set of nonterminals (e.g., S and other syntactic variables)
–  A designated nonterminal called the start symbol
–  A set of productions: LHS ⟼ RHS

•  LHS is a nonterminal
•  RHS is a string of terminals and nonterminals

•  Example: The balanced parentheses language:

•  How many terminals? How many nonterminals? Productions?�

CIS 341: Compilers 4

S ⟼ (S)S

S ⟼ ε

Consider finding left-most derivations
•  Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input�
S ((1 + 2 + (3 + 4)) + 5�
⟼ E + S ((1 + 2 + (3 + 4)) + 5�
⟼ (S) + S 1 (1 + 2 + (3 + 4)) + 5�
⟼ (E + S) + S 1 (1 + 2 + (3 + 4)) + 5�
⟼ (1 + S) + S 2 (1 + 2 + (3 + 4)) + 5�
⟼ (1 + E + S) + S 2 (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + S) + S ((1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + E) + S ((1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + (S)) + S 3 (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + (E + S)) + S 3 (1 + 2 + (3 + 4)) + 5�
⟼ …

CIS 341: Compilers 5

S ⟼ E + S | E
E ⟼ number | (S)

There is a problem
•  We want to decide which production�

to apply based on the look-ahead symbol.
•  But, there is a choice:�

�
(1) S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1)

vs.�
(1) + 2 S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E
 ⟼ (1) + 2

•  Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick �

S ⟼ E or S ⟼ E + S first.

CIS 341: Compilers 6

S ⟼ E + S | E
E ⟼ number | (S)

LL(1) GRAMMARS

Zdancewic CIS 341: Compilers 7

Grammar is the problem
•  Not all grammars can be parsed “top-down” with only a single

lookahead symbol.
•  Top-down: starting from the start symbol (root of the parse tree) and

going down

•  LL(1) means
–  Left-to-right scanning
–  Left-most derivation,
–  1 lookahead symbol

•  This language isn’t “LL(1)”
•  Is it LL(k) for some k?

•  What can we do?

CIS 341: Compilers 8

S ⟼ E + S | E
E ⟼ number | (S)

Making a grammar LL(1)
•  Problem: We can’t decide which S production to apply until we see

the symbol after the first expression.
•  Solution: “Left-factor” the grammar. There is a common S prefix for

each choice, so add a new non-terminal S’ at the decision point:

•  Also need to eliminate left-recursion somehow. Why?
•  Consider:

CIS 341: Compilers 9

S ⟼ E + S | E
E ⟼ number | (S)

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

LL(1) Parse of the input string
•  Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input�

S ((1 + 2 + (3 + 4)) + 5�
⟼ E S’ ((1 + 2 + (3 + 4)) + 5�
⟼ (S) S’ 1 (1 + 2 + (3 + 4)) + 5�
⟼ (E S’) S’ 1 (1 + 2 + (3 + 4)) + 5�
⟼ (1 S’) S’ + (1 + 2 + (3 + 4)) + 5�
⟼ (1 + S) S’ 2 (1 + 2 + (3 + 4)) + 5�
⟼ (1 + E S’) S’ 2 (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 S’) S’ + (1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + S) S’ ((1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + E S’) S’ ((1 + 2 + (3 + 4)) + 5�
⟼ (1 + 2 + (S)S’) S’ 3 (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 10

S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

Predictive Parsing
•  Given an LL(1) grammar:

–  For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

–  Top-down parsing = predictive parsing
–  Driven by a predictive parsing table: �

 nonterminal * input token → production

•  Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 341: Compilers 11

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

How do we construct the parse table?
•  Consider a given production: A à γ
•  Construct the set of all input tokens that may appear first in strings

that can be derived from γ
–  Add the production à γ to the entry (A,token) for each such token.

•  If γ can derive ε (the empty string), then we construct the set of all
input tokens that may follow the nonterminal A in the grammar.
–  Add the production à γ to the entry (A, token) for each such token.

•  Note: if there are two different productions for a given entry, the
grammar is not LL(1)

CIS 341: Compilers 12

Example
•  First(T) = First(S)
•  First(S) = First(E)
•  First(S’) = { + }
•  First(E) = { number, ‘(‘ }

•  Follow(S’) = Follow(S)
•  Follow(S) = { $, ‘)’ } ∪ Follow(S’)

Zdancewic CIS 341: Compilers 13

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

Note: we want the least
solution to this system of set
equations… a fixpoint
computation. More on
these later in the course.

Converting the table to code
•  Define n mutually recursive functions

–  one for each nonterminal A: parse_A
–  The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
–  Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as

inputs, one for each nonterminal in the “factored” prefix.

•  Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.
–  Consume terminal tokens from the input stream
–  Call parse_X to create sub-tree for nonterminal X
–  If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
input.)

–  Otherwise, this function builds the ast tree itself and returns it.

CIS 341: Compilers 14

DEMO: PARSER.ML

Zdancewic CIS 341: Compilers 15

Hand-generated LL(1) code for the table above.

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ (S)

LL(1) Summary
•  Top-down parsing that finds the leftmost derivation.
•  Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser

•  Problems:
–  Grammar must be LL(1)
–  Can extend to LL(k) (it just makes the table bigger)
–  Grammar cannot be left recursive (parser functions will loop!)

•  Is there a better way?

CIS 341: Compilers 16

LR GRAMMARS

Zdancewic CIS 341: Compilers 17

Bottom-up Parsing (LR Parsers)
•  LR(k) parser:

–  Left-to-right scanning
–  Rightmost derivation
–  k lookahead symbols

•  LR grammars are more expressive than LL
–  Can handle left-recursive (and right recursive) grammars; virtually all

programming languages
–  Easier to express programming language syntax (no left factoring)

•  Technique: “Shift-Reduce” parsers
–  Work bottom up instead of top down
–  Construct right-most derivation of a program in the grammar
–  Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
–  Better error detection/recovery

CIS 341: Compilers 18

Top-down vs. Bottom up
•  Consider the left-�

recursive grammar:

•  (1 + 2 + (3 + 4)) + 5

•  What part of the�
tree must we �
know after scanning�
just (1 + 2

•  In top-down, must�
be able to guess�
which productions�
to use…

CIS 341: Compilers 19

4

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Top-down Bottom-up

Note: ‘(‘ has
been scanned
but not
consumed.
Processing it is
still pending.

S ⟼ S + E | E
E ⟼ number | (S)

Progress of Bottom-up Parsing
Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻ (+ 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
E + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + E ⟻ (1 + 2 + (3 + 4)) + 5
S

CIS 341: Compilers 20

S ⟼ S + E | E
E ⟼ number | (S)

R
ig

ht
m

os
t d

er
iv

at
io

n

Shift/Reduce Parsing
•  Parser state:

–  Stack of terminals and nonterminals.
–  Unconsumed input is a string of terminals
–  Current derivation step is stack + input

•  Parsing is a sequence of shift and reduce operations:
•  Shift: move look-ahead token to the stack
•  Reduce: Replace symbols γ at top of stack with nonterminal X such

that X ⟼ γ is a production. (pop γ, push X)
Stack Input Action

 (1 + 2 + (3 + 4)) + 5 shift (
(1 + 2 + (3 + 4)) + 5 shift 1
(1 + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(E + 2 + (3 + 4)) + 5 reduce: S ⟼ E
(S + 2 + (3 + 4)) + 5 shift +
(S + 2 + (3 + 4)) + 5 shift 2
(S + 2 + (3 + 4)) + 5 reduce: E ⟼ number

CIS 341: Compilers 21

S ⟼ S + E | E
E ⟼ number | (S)

LR(0) GRAMMARS

Zdancewic CIS 341: Compilers 22

Simple LR parsing with no look ahead.

LR Parser States
•  Goal: know what set of reductions are legal at any given point.
•  Idea: Summarize all possible stack prefixes α as a finite parser state.

–  Parser state is computed by a DFA that reads the stack σ.
–  Accept states of the DFA correspond to unique reductions that apply.

•  Example: LR(0) parsing
–  Left-to-right scanning, Right-most derivation, zero look-ahead tokens
–  Too weak to handle many language grammars (e.g. the “sum” grammar)
–  But, helpful for understanding how the shift-reduce parser works.

CIS 341: Compilers 23

Example LR(0) Grammar: Tuples
•  Example grammar for non-empty tuples and identifiers:

•  Example strings:
–  x
–  (x,y)
–  ((((x))))
–  (x, (y, z), w)
–  (x, (y, (z, w)))

CIS 341: Compilers 24

S ⟼ (L) | id
L ⟼ S | L , S

Parse tree for:
(x, (y, z), w)

(L)

L , S

L , S

(L)

L , S x

S

y

S z

w

S

Shift/Reduce Parsing
•  Parser state:

–  Stack of terminals and nonterminals.
–  Unconsumed input is a string of terminals
–  Current derivation step is stack + input

•  Parsing is a sequence of shift and reduce operations:
•  Shift: move look-ahead token to the stack: e.g.

Stack Input Action
 (x, (y, z), w) shift (

(x, (y, z), w) shift x

•  Reduce: Replace symbols γ at top of stack with nonterminal X such
that X ⟼ γ is a production. (pop γ, push X): e.g.

 Stack Input Action
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S

 CIS 341: Compilers 25

S ⟼ (L) | id
L ⟼ S | L , S

Example Run
Stack Input Action

 (x, (y, z), w) shift (
(x, (y, z), w) shift x
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S
(L , (y, z), w) shift ,
(L, (y, z), w) shift (
(L, (y, z), w) shift y
(L, (y , z), w) reduce S ⟼ id
(L, (S , z), w) reduce L ⟼ S
(L, (L , z), w) shift ,
(L, (L, z), w) shift z
(L, (L, z), w) reduce S ⟼ id
(L, (L, S), w) reduce L ⟼ L, S
(L, (L), w) shift)
(L, (L) , w) reduce S ⟼ (L)
(L, S , w) reduce L ⟼ L, S
(L , w) shift ,
(L, w) shift w
(L, w) reduce S ⟼ id
(L, S) reduce L ⟼ L, S
(L) shift)
(L) reduce S ⟼ (L)
S

CIS 341: Compilers 26

S ⟼ (L) | id
L ⟼ S | L , S

Action Selection Problem
•  Given a stack σ and a look-ahead symbol b, should the parser:

–  Shift b onto the stack (new stack is σb)
–  Reduce a production X ⟼ γ, assuming that σ = αγ (new stack is αX)?

•  Sometimes the parser can reduce but shouldn’t
–  For example, X ⟼ ε can always be reduced

•  Sometimes the stack can be reduced in different ways

•  Main idea: decide what to do based on a prefix α of the stack plus the
look-ahead symbol.
–  The prefix α is different for different possible reductions since in

productions X ⟼ γ and Y ⟼ β, γ and β might have different lengths.

•  Main goal: know what set of reductions are legal at any point.
–  How do we keep track?

CIS 341: Compilers 27

LR(0) States
•  An LR(0) state is a set of items keeping track of progress on possible

upcoming reductions.
•  An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side

•  Example items: S ⟼ .(L) or S ⟼ (. L) or L ⟼ S.
•  Intuition:

–  Stuff before the ‘.’ is already on the stack�
(beginnings of possible γ’s to be reduced)

–  Stuff after the ‘.’ is what might be seen next
–  The prefixes α are represented by the state itself

CIS 341: Compilers 28

S ⟼ (L) | id
L ⟼ S | L , S

Constructing the DFA: Start state & Closure
•  First step: Add a new production �

S’ ⟼ S$ to the grammar
•  Start state of the DFA = empty stack, �

so it contains the item:�
 S’ ⟼ .S$

•  Closure of a state:
–  Adds items for all productions whose LHS nonterminal occurs in an item

in the state just after the ‘.’
–  The added items have the ‘.’ located at the beginning (no symbols for

those items have been added to the stack yet)
–  Note that newly added items may cause yet more items to be added to the

state… keep iterating until a fixed point is reached.

•  Example: CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

•  Resulting “closed state” contains the set of all possible productions
that might be reduced next.

CIS 341: Compilers 29

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

Example: Constructing the DFA

•  First, we construct a state with the initial item S’ ⟼ .S$

CIS 341: Compilers 30

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$

Example: Constructing the DFA

•  Next, we take the closure of that state:�
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S ⟼ .id}

•  In the set of items, the nonterminal S appears after the ‘.’
•  So we add items for each S production in the grammar

CIS 341: Compilers 31

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

Example: Constructing the DFA

•  Next we add the transitions:
•  First, we see what terminals and

nonterminals can appear after the
‘.’ in the source state.
–  Outgoing edges have those label.

•  The target state (initially) includes
all items from the source state that
have the edge-label symbol after
the ‘.’, but we advance the ‘.’ (to
simulate shifting the item onto the
stack)

CIS 341: Compilers 32

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA

•  Finally, for each new state, we take the closure.
•  Note that we have to perform two iterations to compute

CLOSURE({S ⟼ (. L)})
–  First iteration adds L ⟼ .S and L ⟼ .L, S
–  Second iteration adds S ⟼ .(L) and S ⟼ .id

CIS 341: Compilers 33

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(

Full DFA for the Example

CIS 341: Compilers 34

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .(L)
S ⟼ .id

L ⟼ L, S.

S ⟼ (L .)
L ⟼ L . , S

S ⟼ (L). L ⟼ S. S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at the
end of the production

•  Current state: run the�
 DFA on the stack.

•  If a reduce state is �
 reached, reduce�

•  Otherwise, if the next�
 token matches an �
 outgoing edge, shift.

•  If no such transition,�
 it is a parse error.

1 2

3

4

5

6 7

8 9

Using the DFA
•  Run the parser stack through the DFA.
•  The resulting state tells us which productions might be

reduced next.
–  If not in a reduce state, then shift the next symbol and transition

according to DFA.
–  If in a reduce state, X ⟼ γ with stack αγ, pop γ and push X.

•  Optimization: No need to re-run the DFA from beginning
every step
–  Store the state with each symbol on the stack: e.g. 1(3(3L5)6

–  On a reduction X ⟼ γ, pop stack to reveal the state too:�
e.g. From stack 1(3(3L5)6 reduce S ⟼ (L) to reach stack 1(3

–  Next, push the reduction symbol: e.g. to reach stack 1(3S
–  Then take just one step in the DFA to find next state: 1(3S7

CIS 341: Compilers 35

Implementing the Parsing Table
Represent the DFA as a table of shape: �

 state * (terminals + nonterminals)
•  Entries for the “action table” specify two kinds of actions:

–  Shift and goto state n
–  Reduce using reduction X ⟼ γ

•  First pop γ off the stack to reveal the state
•  Look up X in the “goto table” and goto that state

CIS 341: Compilers 36

Action
table

Goto
table St

at
e

Terminal Symbols Nonterminal Symbols

Example Parse Table

CIS 341: Compilers 37

() id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx = shift and goto state x
gx = goto state x

Example
•  Parse the token stream: (x, (y, z), w)$

Stack Stream Action (according to table)
ε1 (x, (y, z), w)$ s3
ε1(3 x, (y, z), w)$ s2
ε1(3x2 , (y, z), w)$ Reduce: S⟼id
ε1(3S , (y, z), w)$ g7 (from state 3 follow S)
ε1(3S7 , (y, z), w)$ Reduce: L⟼S
ε1(3L , (y, z), w)$ g5 (from state 3 follow L)
ε1(3L5 , (y, z), w)$ s8
ε1(3L5,8 (y, z), w)$ s3
ε1(3L5,8(3 y, z), w)$ s2

Zdancewic CIS 341: Compilers 38

LR(0) Limitations
•  An LR(0) machine only works if states with reduce actions

have a single reduce action.
–  In such states, the machine always reduces (ignoring lookahead)

•  With more complex grammars, the DFA construction will
yield states with shift/reduce and reduce/reduce conflicts:

 OK shift/reduce reduce/reduce

•  Such conflicts can often be resolved by using a look-ahead
symbol: LR(1)

CIS 341: Compilers 39

S ⟼ (L). S ⟼ (L).
 L ⟼ .L , S

 S ⟼ L ,S.
S ⟼ ,S.

Examples
•  Consider the left associative and right associative “sum” grammars:

 �
 left right

•  One is LR(0) the other isn’t… which is which and why?
•  What kind of conflict do you get? Shift/reduce or Reduce/reduce?

•  Ambiguities in associativity/precedence usually lead to shift/reduce
conflicts.

CIS 341: Compilers 40

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ E + S | E
E ⟼ number | (S)

LR(1) Parsing
•  Algorithm is similar to LR(0) DFA construction:

–  LR(1) state = set of LR(1) items
–  An LR(1) item is an LR(0) item + a set of look-ahead symbols:�

 A ⟼ α.β , L

•  LR(1) closure is a little more complex:
•  Form the set of items just as for LR(0) algorithm.
•  Whenever a new item C ⟼ .γ is added because A ⟼ β.Cδ , L is

already in the set, we need to compute its look-ahead set M:
1. The look-ahead set M includes FIRST(δ) �

(the set of terminals that may start strings derived from δ)
2. If δ can derive ε (it is nullable), then the look-ahead M also contains L

CIS 341: Compilers 41

Example Closure

•  Start item: S’ ⟼ .S$, {}
•  Since S is to the right of a ‘.’, add: �

 S ⟼ .E + S , {$} Note: {$} is FIRST($)�
 S ⟼ .E , {$}

•  Need to keep closing, since E appears to the right of a ‘.’ in�
‘.E + S’:�
 E ⟼ .number , {+} Note: + added for reason 1�
 E ⟼ .(S) , {+}

•  Because E also appears to the right of ‘.’ in ‘.E’ we get:�
 E ⟼ .number , {$} Note: $ added for reason 2�
 E ⟼ .(S) , {$}

•  All items are distinct, so we’re done

CIS 341: Compilers 42

S’ ⟼ S$
S ⟼ E + S | E
E ⟼ number | (S)

Using the DFA

•  The behavior is determined if:
–  There is no overlap among the�

look-ahead sets for each reduce �
item, and

–  None of the look-ahead symbols�
appear to the right of a ‘.’

CIS 341: Compilers 43

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S ⟼ E .+ S {$}
S ⟼ E. {$}

E

1

+ $ E

1 g2

2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift
and reduce is resolved.

LR variants
•  LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

–  DFA + stack is a push-down automaton (recall 262)
•  In practice, LR(1) tables are big.

–  Modern implementations (e.g. menhir) directly generate code

•  LALR(1) = “Look-ahead LR”
–  Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

–  Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
–  Results in a much smaller parse table and works well in practice
–  This is the usual technology for automatic parser generators: yacc, ocamlyacc

•  GLR = “Generalized LR” parsing
–  Efficiently compute the set of all parses for a given input
–  Later passes should disambiguate based on other context

CIS 341: Compilers 44

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+,$}
E ⟼ .(S) {+,$}

Classification of Grammars

CIS 341: Compilers 45

LR(0)

SLR

LALR(1)

LR(1)

LL(1)

