Lecture 14

CIS 341: COMPILERS

Announcements

« HW4: OAT v. 1.0
— Parsing & basic code generation
— Due: March 28t
— START EARLY!

* Midterm Exam
— Grading in progress

Zdancewic CIS 341: Compilers

Compilation in a Nutshell

Source Code
(Character stream)
if (b ==0) { a=1; }

Token stream:

if| (| b

I
I
o
-~
~
Q
I
o
~e
-

Abstract Syntax Tree:

Intermediate code:
11:

gcnd = icmp eq 164 %b, 0
IJC)IIEE br il %cnd, label %12,
label %13
12:

store i64* %a, 1

br label %13
13:

Assembly Code
11:

cmpg %eax, $0
jeq 12 <
jmp 13

12:

See HWA4

OATV 1.0

Zdancewic CIS 341: Compilers 4

OAT

Simple C-like Imperative Language
— supports 64-bit integers, arrays, strings
— top-level, mutually recursive procedures
— scoped local, imperative variables

See examples in hw4 /atprograms directory

How to design/specify such a language?
— Grammatical constructs
— Semantic constructs

Zdancewic CIS 341: Compilers

U1

Example Ambiguity in Real Languages

 Consider this grammar: Consider how to parse:
S—if (E) S
g:;fzéE)SelseS if (E) if (E,) S,
s else S,

e |s this grammar OK? * This is known as the

“dangling else” problem.

* What should the “right”
answer be?

» How do we change the
grammar?¢

CIS 341: Compilers

How to Disambiguate if-then-else

« Want to rule out:

if (E;)4 i1f (E,) S;- else S,

* Observation: An un-matched ‘if’ should not appear as the ‘then’
clause of a containing ‘if’.

S+— M | U // M = “matched”, U = “unmatched”
U—1f (E)S // Unmatched ‘if’

U— 1f (E) Melse U // Nested if is matched

M— 1f (E) Melse M //Matched ‘if’

M— X=E // Other statements

 See: else-resolved-parser.mly

CIS 341: Compilers

OAT: Alternative: Use {}

* Ambiguity arises because the ‘then’ branch is not well bracketed:

if (E,) { if

(E,) { S; } } else s, // unambiguous
if (E,) { if (E;) { S

}
., } else s, } // unambiguous

 So: could just require brackets

— But requiring them for the else clause too leads to ugly code for chained
if-statements:

if (cl) { .
So, compromise? Allow unbracketed else
boese | block only if the body is ‘if’:
if (c2) {
if (cl) {
} else {
if (c3) { } else if (c2) {
pese boetse i (e A I?erll_zfslzs.’;mbiguous
} } belse * Easy to parse
} } * Enforces good style

Zdancewic CIS 341: Compilers 8

Scope, Types, and Context

STATIC ANALYSIS

Zdancewic CIS 341: Compilers 9

Variable Scoping

 Consider the problem of determining whether a programmer-declared
variable is in scope.

 |[ssues:

— Which variables are available at a given point in the program?

— Shadowing — is it permissible to re-use the same identifier, or is it an error?

« Example: The following program is syntactically correct but not well-
formed. (y and q are used without being defined anywhere)

int fact(int x) {
var acc = 1;
while (x > 0) {
acc = acc * y;
X =qg - 1;
}

return acc;

}

Zdancewic

CIS 341: Compilers

Q: Can we solve this problem
by changing the parser to rule
out such programs?

10

Contexts and Inference Rules

Need to keep track of contextual information.
— What variables are in scope?
— What are their types?

How do we describe this?

— In the compiler there's a mapping from variables to information we know
about them.

Zdancewic CIS 341: Compilers 11

Why Inference Rules?

They are a compact, precise way of specifying language properties.
— E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

Inference rules correspond closely to the recursive AST traversal that
implements them

Type checking (and type inference) is nothing more than attempting to
prove a different judgment (G;L - e : t) by searching backwards through
the rules.

Compiling in a context is nothing more than a collection of inference
rules specifying yet a different judgment (G + src = target)
— Moreover, the compilation judgment is similar to the typechecking judgment

Strong mathematical foundations

— The “Curry-Howard correspondence”: Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

— See CIS 500 next Fall if you're interested in type systems!

CIS 341: Compilers

Inference Rules

 We canread a judgmentG;LFe:tas
“the expression e is well typed and has type t”

* For any environment G, expression e, and statements s, s,
G;L;rt+~if (e)s, elses,

holdsif G;L-e:bool and G;L;rttrs, and G;L;rtrs,
all hold.

* More succinctly: we summarize these constraints as an inference rule:

gm—

Premises — G;LFe:bool G;L;rt s, G;L;rthks,

M|

Conclusion— G;L;rt - if (e)s, elses,

=

 This rule can be used for any substitution of the syntactic
metavariables G, e, s; and s,.

CIS 341: Compilers 13

Checking Derivations

* A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

 Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

« Goal of the type checker: verify that such a tree exists.

« Examplel: Find a tree for the following program using the inference
rules in oatO-defn.pdf:

var x1 = 0;
var x2 = x1 + x1;
x1l = x1 — x2;

return(xl);

Example2: There is no tree for this ill-scoped program:

var x2 = x1 + x1;
return(x2);

CIS 341: Compilers 14

Example Derivation

var x1 = 0;
var x2 = x1 + x1;
x1l = x1 — x2;

return(xl);

Dy Dy, D3 Dy
Go; - ;int Fvar x; =0; var xp = x1 + Xx1; X1 = X1 - Xp; return x1; = -, X1:int,xp:int
- var xq1 =0; var xp = x; + X1; X1 = X1 - Xp; return X ;

[STMTS]
[PROG]

Zdancewic CIS 341: Compilers 15

Example Derivation

INT
Go;-FO:in‘t{]]
CONST
Gg;-F0: int
— [DECL]
Go;- Fvarx; =0 = -, x1:int [|
SDECL
D; = Gp;-;intkFvarx; =0; = -, x1:int
X1:int € -, x7:int X1:int € -, x1:int
ADD
-+ : (int,int) — int [app] Gpg;-,x1:int - xq : int [var] Gp;-,X1:int F xq : int [VAR}
Gpo;-,x1:int Fx7 + x1 : int [DECL] [BOP
Go;-,x1:int;int - var xp = x; + x1; = -, x1:int,xp:int /spECL]
D, = Gp;+,x1:int;int Fvar xp =x1 + x7; = -, x1:int,xp:int

Zdancewic CIS 341: Compilers 16

Example Derivation

X1:int € -, x1:int, x> :int ;

D X1:int € -, x1:int, x> :int Xp:int € -, x1:int,xp:int
3 — — [apD] : : — [vag] : : — [VAR]
F -:(int,int) — int Go;+,x1:int,xp:int | x; : int Go;+,x1:int, xp:int - x, : int

BOP
Go;-,x1:int, xp:int - x1 -xp : int [or]

ASSN
Go;+,x1:int, xp:int;int Hx; =x71-xp; = -, x1:int, xp:int []

X1:1int € -, x7:int, x> :int

VAR
Go;-,x1:int, xy:int F xq : int [vAR]

RET
Dy = Gg;-,x1:int,xp:int;int F return x1; = -, Xx1:1int, x> :int [Re]

Zdancewic CIS 341: Compilers 17

Why Inference Rules?

« They are a compact, precise way of specifying language properties.
— E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

* Inference rules correspond closely to the recursive AST traversal that
implements them

« Compiling in a context is nothing more an “interpretation” of the
inference rules that specify typechecking*: [CF e : t]

— Compilation follows the typechecking judgment

» Strong mathematical foundations

— The “Curry-Howard correspondence”: Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

— See CIS 500 next Fall if you're interested in type systems!

*Here (and later) we'll write context C for G; L, the combination of the
CIS 341: Compilers global and local contexts. 18

Compilation As Translating Judgments

 Consider the source typing judgment for source expressions:

Cre:t

« How do we interpret this information in the target language?
[CFe:t]= !¢

* [tlis a target type

 [e] translates to a (potentially empty) sequence of instructions, that,
when run, computes the result into some operand

« INVARIANT: if [Cre:t] =ty operand, stream
then the type (at the target level) of the operand is ty=[t]

Zdancewic CIS 341: Compilers 19

Example

e C 341 +5:int whatis [C+341 +5:int] ¢
[+341 :int] = (is4, const 341, []) [5 :int] = (i64, const 5, [])
[C+ 341 : int] = (is4, const 341, []) [C+5:int] = (i64, const s, [])

[CF341 +5:int] = (i64, $tmp, [%tmp = add i64 (Const 341) (Const 5)])

Zdancewic CIS 341: Compilers 20

What about the Context?

« Whatis [C]?
* Source level C has bindings like: x:int, y:bool

— We think of it as a finite map from identifiers to types
* What is the interpretation of C at the target level?

 [CI maps source identifiers, “x” to source types and [x]

* What is the interpretation of a variable [x] at the target level?
— How are the variables used in the type system?

x:t €L x:t€L G;LiFexp:t
TYP_VAR TYP_ASSN
G;LFx:t - G;L;rtFx=exp; = L -
as expressions as addresses
(which denote values) (which can be assigned)

Zdancewic CIS 341: Compilers 21

Interpretation of Contexts

« [CI = a map from source identifiers to types and target identifiers

* INVARIANT:
x:t € C means that

(1) lookup [C] x = (t, $id_x)
(2) the (target) type of $id_x is [t]* (a pointer to [t])

Zdancewic CIS 341: Compilers

22

Interpretation of Variables

p—

x:t €L
G;LFx:t

as expressions
(which denote values)

TYP_VAR

« Establish invariant for expressions:

= (%tmp, [%tmp = load i64* %id x])

where (164, $id_x) = lookup [L] x

 What about statements?

p—

x:teL G;LFexp:t
G;L;rt-x=exp; = L

as addresses

(which can be assigned)

Zdancewic CIS 341: Compilers

TYP_ASSN = stream @

[store [t] opn, [tl* %id x]

where (t, $1d_x) = lookup [L] x
and [G;L + exp : t] = ([t], opn, stream)

23

Other Judgments?

Statement:
[C;rt-stmt= C'] = [C'T, stream

Declaration:
[GLFtx=exp = G;Lxit]= [G;Lx:t], stream

INVARIANT: stream is of the form:
stream’ @
[$1d x = alloca [t];
store [t] opn, [t]* %id x]

and [G;L+Fexp:t]=([tl, opn, stream’)

Rest follow similarly

Zdancewic CIS 341: Compilers

24

COMPILING CONTROL

Zdancewic CIS 341: Compilers

