Lecture 15

CIS 341: COMPILERS

Announcements

+ HW4: OATv. 1.0 Note new
— Parsing & basic code generation Due Date!
— Due: March 28t

— START EARLY!

Midterm Exam

— Grading almost finished. We expect to release the results on gradescope
by Thursday

Zdancewic CIS 341: Compilers

Inference Rules

 We canread a judgmentG;LFe:tas
“the expression e is well typed and has type t”

* For any environment G, expression e, and statements s, s,
G;L;rt+~if (e)s, elses,

holdsif G;L-e:bool and G;L;rttrs, and G;L;rtrs,
all hold.

* More succinctly: we summarize these constraints as an inference rule:

gm—

Premises — G;LFe:bool G;L;rt s, G;L;rthks,

M|

Conclusion— G;L;rt - if (e)s, elses,

=

 This rule can be used for any substitution of the syntactic
metavariables G, e, s; and s,.

CIS 341: Compilers 3

Compilation As Translating Judgments

 Consider the source typing judgment for source expressions:

Cre:t

« How do we interpret this information in the target language?
[CFe:t]= !¢

* [tlis a target type

 [e] translates to a (potentially empty) sequence of instructions, that,
when run, computes the result into some operand

« INVARIANT: if [Cre:t] =ty operand, stream
then the type (at the target level) of the operand is ty=[t]

Zdancewic CIS 341: Compilers

Example

e C 341 +5:int whatis [C+341 +5:int] ¢
[+341 :int] = (is4, const 341, []) [5 :int] = (i64, const 5, [])
[C+ 341 : int] = (is4, const 341, []) [C+5:int] = (i64, const s, [])

[CF341 +5:int] = (i64, $tmp, [%tmp = add i64 (Const 341) (Const 5)])

U1

Zdancewic CIS 341: Compilers

What about the Context?

« Whatis [C]?
* Source level C has bindings like: x:int, y:bool

— We think of it as a finite map from identifiers to types
* What is the interpretation of C at the target level?

 [CI maps source identifiers, “x” to source types and [x]

* What is the interpretation of a variable [x] at the target level?
— How are the variables used in the type system?

x:t €L x:t€L G;LiFexp:t
TYP_VAR TYP_ASSN
G;LFx:t - G;L;rtFx=exp; = L -
as expressions as addresses
(which denote values) (which can be assigned)

Zdancewic CIS 341: Compilers 6

Interpretation of Contexts

« [CI = a map from source identifiers to types and target identifiers

* INVARIANT:
x:t € C means that

(1) lookup [C] x = (t, $id_x)
(2) the (target) type of $id_x is [t]* (a pointer to [t])

Zdancewic CIS 341: Compilers

Interpretation of Variables

p—

x:t €L
G;LFx:t

as expressions
(which denote values)

TYP_VAR

« Establish invariant for expressions:

= (%tmp, [%tmp = load i64* %id x])

where (164, $id_x) = lookup [L] x

 What about statements?

p—

x:teL G;LFexp:t
G;L;rt-x=exp; = L

as addresses

(which can be assigned)

Zdancewic CIS 341: Compilers

TYP_ASSN = stream @

[store [t] opn, [tl* %id x]

where (t, $1d_x) = lookup [L] x
and [G;L + exp : t] = ([t], opn, stream)

Other Judgments?

Statement:
[C;rt-stmt= C'] = [C'T, stream

Declaration:
[G,LFvarx=exp = G;Lx:t]= [G;L,x:t], stream

INVARIANT: stream is of the form:
stream’ @
[$1d x = alloca [t];
store [t] opn, [t]* %id x]

when [G;L+exp:t]=([t], opn, stream’)

Rest follow similarly

Zdancewic CIS 341: Compilers

COMPILING CONTROL

Zdancewic CIS 341: Compilers

Translating while

* Consider translating “while(e) s”:

— Test the conditional, if true jump to the body, else jump to the label after
the body.

[C;rt ~while(e) s = C’] = [C'],

lpre:

opn = [C - e : bool]

$test = icmp eq il opn, O

br %test, label %lpost, label %1lbody
lbody:

[C;rt - s = C']

br %lpre
lpost:

* Note: writing opn =[C + e : bool] Ispun
— translating [C e : bool] generates code that puts the result into opn
— In this notation there is implicit collection of the code

CIS 341: Compilers 11

Translating if-then-else

 Similar to while except that code is slightly more complicated because
if-then-else must reach a merge and the else branch is optional.

[C;rt mif (e;) s; else s, = C']= [CT]

opn = [C - e : bool]

$test = icmp eq il opn, O

br %$test, label %else, label %$then
then:

[C;rt - s; = C']

br %merge
else:

[C; rt s, = C']

br %merge
merge:

CIS 341: Compilers 12

Connecting this to Code

Instruction streams:
— Must include labels, terminators, and “hoisted” global constants

Must post-process the stream into a control-flow-graph

See frontend.ml from HW4

Zdancewic CIS 341: Compilers

13

OPTIMIZING CONTROL

Zdancewic CIS 341: Compilers

Standard Evaluation
 Consider compiling the following program fragment:

$tmpl = icmp Eqg [y], O ;7 ly
$tmp2 = and [x] [tmpl]

$tmp3 = icmp Eqg [w], O

$tmpd = or %Stmp2, S$tmp3

$tmp5 = icmp Eqg %$tmp4, O

z = 3; br %tmp4, label %else, label %then
else

z = 4; then:
return z; store [z], 3

br %merge

else:
store [z], 4
br %merge

merge:
$tmp5 = load [z]

ret Itmpb5
CIS 341: Compilers D

Observation

Usually, we want the translation [e] to produce a value
— [C*Fe:t] = (ty, operand, stream)
— eg. [Cre, +e,:int] = (164, $tmp, $tmp = add [e,] [e,ll)

But when the expression we're compiling appears in a test, the
program jumps to one label or another after the comparison but
otherwise never uses the value.

In many cases, we can avoid “materializing” the value (i.e. storing it in
a temporary) and thus produce better code.

— This idea also lets us implement different functionality too:
e.g. short-circuiting boolean expressions

CIS 341: Compilers 16

Idea: Use a different translation for tests

Usual Expression translation:
[C F e :t] = (ty, operand, stream)

Conditional branch translation of booleans,
without materializing the value:

[CFe: bool@] ltrue Ifalse = stream
[C, rt+if (e) thensT elses2 = C']1= [C],

insns,
then:
Notes: [s1]
« takes two extra br %$merge
arguments: a “true” else:
branch label and a [s,]
“false” branch label. br %merge
« Doesn’t “return a value” merge:
. Asidg: thi; is a form of where
continuation-passing [C, rt=s,= C'] =[C'], insns,
translation... [C, rt+s,= C”]=[C"], insns,

[CFe:bool@] thenelse = insns,
CIS 341: Compilers 17

Short Circuit Compilation: Expressions

e [Cre:bool@] ltrue Ifalse = insns

FALSE
[C + false : bool@] ltrue lfalse = [br %1false]

TRUE
[C + true : bool@] ltrue Ifalse = [br $1ltrue]

[CF e : bool@] Ifalse Itrue = insns
NOT

[CF le: bool@] ltrue lfalse = insns

Zdancewic CIS 341: Compilers

18

Short Circuit Evaluation

Idea: build the logic into the translation

[CFel:bool@] ltrue right = insns, [C*+ e2 : bool@] ltrue Ifalse = insns,

[C+el|e2: bool@] ltrue Ifalse = insns,
right:
insn,

[CF el :bool@] right lfalse = insns, [CF e2 : bool@] ltrue lfalse = insns,

[C Fel&e2 : bool@] ltrue Ifalse = insns,
right:
insn,

where right is a fresh label
Zdancewic CIS 341: Compilers

19

Short-Circuit Evaluation

Consider compiling the following program fragment:

if (x & ly |
z = 3;
else
z = 4

CIS 341: Compilers

$tmpl = icmp Eq [x], O
br %tmpl, label %right2, label %rightl

rightl:
$tmp2 = icmp Eq [yl, O
br %tmp2, label %then, label %right2

right2:
$tmp3 = icmp Eq [w], O
br %$tmp3, label %then, label %else

then:
store [z], 3
br %merge

else:
store [z], 4
br %merge

merge:
$tmp5 = load [z]
ret tmp5

The Story So Far

e As of HW4:

— See how to compile a C-like language to

: . x86 assembly by way of the LLVM IR
Lexical Analysis y by way

Token Streaml * Main idea 1:
: — Translation by way of a series of
Parsing languages, each with well-defined
Abstract Syntaxl semantics
Intermediate Code . Main idea 2:
Generation — Structure of the semantics (e.g. scoping
Intermediate Code and/or type-checking rgles) guides the
structure of the translation

Code Generation

Target Codel

Zdancewic CIS 341: Compilers 21

What’s next?

 Source language features:
— First-class functions
— Obijects & Classes
— Polymorphism
— Modules

= How do we define their semantics? How do we compile them?

 Performance / Optimization:
— How can we improve the quality of the generated code?
— What information do we need to do the optimization?

= Static analyses

Zdancewic CIS 341: Compilers

Untyped lambda calculus
Substitution

Evaluation

FIRST-CLASS FUNCTIONS

Zdancewic CIS 341: Compilers

23

“Functional” languages

« Languages like ML, Haskell, Scheme, Python, C#, Java 8, Swift
 Functions can be passed as arguments (e.g. map or fold)
 Functions can be returned as values (e.g. compose)

e Functions nest: inner function can refer to variables bound in the outer
function

let add fun x -=> funy -> x + vy
let inc add 1
let dec = add -1

let compose = fun £ -> fun g -> fun x -> £ (g x)
let id = compose inc dec

* How do we implement such functions?

CIS 341: Compilers 24

Free Variables and Scoping

let add = fun x -=> funy -> x + y
let inc = add 1

e Theresult of add 1 is a function

 After calling add, we can’t throw away its argument (or its local
variables) because those are needed in the function returned by add.

« We say that the variable x is free in fun y -=> x + y
— Free variables are defined in an outer scope

« We say that the variable y is bound by “fun y” and its scope is the
body “x + y” in the expression fun y -> x + y

« A term with no free variables is called closed.
« A term with one or more free variables is called open.

CIS 341: Compilers 25

(Untyped) Lambda Calculus

* The lambda calculus is a minimal programming language.
— Note: we're writing (fun x -> e) lambda-calculus notation: A x. e

* It has variables, functions, and function application.
— That’s it!
— It's Turing Complete.
— It’s the foundation for a /ot of research in programming languages.

— Basis for “functional” languages like Scheme, ML, Haskell, etc.
Abstract syntax in OCaml:

type exp =
| var of var (* variables

| Fun of var * exp (* functions: fun x -> e *)

*)

| App of exp * exp (* function application *)
Concrete syntax: exp 1=
X variables
fun x ->exp functions
exp, exp, function application
(exp) parentheses 26

CIS 341: Compilers

« The only values of the lambda calculus are (closed) functions:

Values and Substitution

val ::=

| fun x —=>exp functions are values

« To substitute a (closed) value v for some variable x in an expression e

— Replace all free occurrences of x in e by v.

— In OCaml: written subst v x e
— In Math: written e{v/x}

 Function application is interpreted by substitution:

CIS 341

(fun x -=> funy ->x +vy) 1
subst 1 x (fun y -> x + vy)
(fun y -=> 1 + vy)

: Compilers

27

Lambda Calculus Operational Semantics

e Substitution function (in Math):

x{v/x} =V (replace the free x by v)
yiv/ix} =y (assuming y # x)
(fun x -> exp){v/x} = (fun x -> exp) (x is bound in exp)
(fun y -> exp){v/x} = (fun y -> exp{v/x}) (assuming y # x)
(e, e)){v/x} = (e {v/x} e {v/x}) (substitute everywhere)

« Examples:
x y {(fun z ->2)/y} = x(funz->2z)

(fun x -> x y){(fun z -> z) /y} = (fun x -> x (fun z -> 7))

(fun x -=> x){(fun z->2)/x} = (funx->x) // xis not free!

Zdancewic CIS 341: Compilers 28

Free Variable Calculation

« An OCaml function to calculate the set of free variables in a lambda
expression:

let rec free vars (e:exp) : VarSet.t =
begin match e with
| Var x -> VarSet.singleton x
| Fun(x, body) -> VarSet.remove x (free vars body)
| App(el, e2) -> VarSet.union (free vars el) (free vars e2)
end

« A lambda expression e is closed if free vars e returns
VarSet.empty

 |In mathematical notation:

fv(x) = {x]
fv(fun x -> exp) = fv(exp) \ {x} (‘x” is a bound in exp)
fv(exp, exp,) = fv(exp;) U fv(exp,)

Zdancewic CIS 341: Compilers 29

Operational Semantics

* Specified using just two inference rules with judgments of the form
exp U val

— Read this notation a as “program exp evaluates to value val”

— This is call-by-value semantics: function arguments are evaluated before
substitution

viv

“Values evaluate to themselves”

exp; U (fun x -> exp;) exp, v exp;{v/x} ¥ w

exp; exp, ¥ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

Zdancewic CIS 341: Compilers 30

Variable Capture

« Note that if we try to naively "substitute" an open term, a bound
variable might capture the free variables:

(fun x -> (x y)) {(fun z -> x) / y} Note: x is free in (fun x -> X)
= fun x-> (x (fun z -> X)) free x is captured!!

« Usually not the desired behavior

— This property is sometimes called "dynamic scoping"

The meaning of "x" is determined by where it is bound dynamically,
not where it is bound statically.

— Some languages (e.g. emacs lisp) are implemented with this as a "feature"
— But, leads to hard to debug scoping issues

Zdancewic CIS 341: Compilers 31

Alpha Equivalence

 Note that the names of bound variables don't matter.

— i.e. it doesn't matter which variable names you use, as long as you use
them consistently

(fun x ->y x) isthe "same" as (funz->y z)

the choice of "x" or "z" is arbitrary, as long as we consistently
rename them

— Two terms that differ only by consistent renaming of bound variables are
called alpha equivalent

 The names of free variables do matter:
(fun x ->y x) is not the "same" as (fun x -> z x)

Intuitively: y an z can refer to different things from some outer scope

Zdancewic CIS 341: Compilers 32

Fixing Substitution

» Consider the substitution operation:
{e,/x} e,

 To avoid capture, we define substitution to pick an alpha equivalent
version of e; such that the bound names of e; don't mention the free
names of e,.

— Then do the "naive" substitution.

For example: (fun x -> (xy)) {(fun z->x)/y}
= (fun x' -> (X' (fun z -> X)) rename X to x'

Zdancewic CIS 341: Compilers 33

