
CIS 341: COMPILERS 
Lecture 15 



Announcements 
 

•  HW4:  OAT v. 1.0 
–  Parsing & basic code generation 
–  Due: March 28th 

•  Midterm grades posted to gradescope later today. 

 

Zdancewic     CIS 341: Compilers     2 



FIRST-CLASS FUNCTIONS 

Zdancewic     CIS 341: Compilers     3 

 
 
 
 
 
 
Untyped lambda calculus 
Substitution 
Evaluation 
 
 



Operational Semantics 
•  Specified using just two inference rules with judgments of the form 

exp ⇓  val 
–  Read this notation a as “program exp evaluates to value val” 
–  This is call-by-value semantics: function arguments are evaluated before 

substitution 

Zdancewic     CIS 341: Compilers     4 

v ⇓ v 

exp1 ⇓ (fun x -> exp3)   exp2 ⇓ v     exp3{v/x} ⇓ w 
     

exp1 exp2  ⇓ w 

“Values evaluate to themselves” 

“To evaluate function application: Evaluate the function to a value, evaluate the�
argument to a value, and then substitute the argument for the function. ” 



Variable Capture 
•  Note that if we try to naively "substitute" an open term, a bound 

variable might capture the free variables:�
�
  (fun x -> (x y))  {(fun z -> x) / y}        Note:  x is free in (fun x -> x)�
=  fun x -> (x (fun z -> x))                     free x is captured!! 

•  Usually not the desired behavior 
–  This property is sometimes called "dynamic scoping"  �

The meaning of "x" is determined by where it is bound dynamically,�
not where it is bound statically. 

–  Some languages (e.g. emacs lisp) are implemented with this as a "feature" 
–  But, leads to hard to debug scoping issues 

Zdancewic     CIS 341: Compilers     5 



Alpha Equivalence 
•  Note that the names of bound variables don't matter. 

–  i.e. it doesn't matter which variable names you use, as long as you use 
them consistently 

                (fun x -> y x)     is the  "same"  as   (fun z -> y z) 
     the choice of "x" or "z" is arbitrary, as long as we consistently  
     rename them 
–  Two terms that differ only by consistent renaming of bound variables are 

called alpha equivalent 

 
•  The names of free variables do matter:�

           (fun x -> y x)     is not the "same" as   (fun x -> z x)�
�
Intuitively: y an z can refer to different things from some outer scope 

Zdancewic     CIS 341: Compilers     6 



Fixing Substitution 
•  Consider the substitution operation:  �

                                  {e2/x} e1 

 
•  To avoid capture, we define substitution to pick an alpha equivalent 

version of e1 such that the bound names of e1 don't mention the free 
names of e2. 
–  Then do the "naïve" substitution. 

For example:    (fun x -> (x y))  {(fun z -> x) / y}  
   =  (fun x' -> (x' (fun z -> x))               rename x to x' 

Zdancewic     CIS 341: Compilers     7 



IMPLEMENTING A LAMBDA 
CALCULUS INTERPRETER  

Zdancewic     CIS 341: Compilers     8 

 
 
See fun.ml 
 
 
 



CLOSURE CONVERSION 

Zdancewic     CIS 341: Compilers     9 

 
 
 
 
 

 
Compiling lambda calculus to straight-line code. 
Representing evaluation environments at runtime.�
�
 

 
 
 



Compiling First-class Functions 

•  To implement first-class functions on a processor, there are two 
problems: 
–  First: we must implement substitution of free variables 
–  Second: we must separate ‘code’ from ‘data’ 

•  Reify the substitution: 
–  Move substitution from the meta language to the object language by 

making the data structure & lookup operation explicit 
–  The environment-based interpreter is one step in this direction 

•  Closure Conversion:  
–  Eliminates free variables by packaging up the needed environment in the 

data structure. 

•  Hoisting: 
–  Separates code from data, pulling closed code to the top level. 

Zdancewic     CIS 341: Compilers     10 



Example of closure creation 
•  Recall the “add” function:�

let add = fun x -> fun y -> x + y
 
•  Consider the inner function:  fun y -> x + y

•  When run the function application:  add 4  
the program builds a closure and returns it. 
–  The closure is a pair of the environment and a code pointer. 

•  The code pointer takes a pair of parameters: env and y 
–  The function code is (essentially):�

 fun (env, y) -> let x = nth env 0 in x + y

CIS 341: Compilers 11 

ptr Code(env, y, body)

(4) code body 



Representing Closures 
•  As we saw, the simple closure conversion algorithm doesn’t generate  

very efficient code. 
–  It stores all the values for variables in the environment, �

even if they aren’t needed by the function body. 
–  It copies the environment values each time a nested closure is created. 
–  It uses a linked-list datastructure for tuples. 

•  There are many options: 
–  Store only the values for free variables in the body of the closure. 
–  Share subcomponents of the environment to avoid copying 
–  Use vectors or arrays rather than linked structures 

CIS 341: Compilers 12 



Array-based Closures with N-ary Functions 
(fun (x y z) ->

(fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z 
n,m 

p 

nil x y z

nxt n m

nxt p +

Closure B 

env code

Closure A 

Closure B 

env code

Closure A 

app

1,0

Note how free 
variables are 
“addressed” 
relative to the 
closure due to 
shared env.   

“follow 1 nxt�
  ptr then look�
  up index 0” 

“follow 2 nxt�
  ptrs then look�
  up index 2” 



Adding Integers to Lambda Calculus 

Zdancewic     CIS 341: Compilers     14 

exp1 ⇓ n1  exp2 ⇓ n2 
     

exp1 + exp2  ⇓ (n1 ⟦+⟧ n2) 

exp ::=  
 | … 
 | n        constant integers   
 | exp1 + exp2     binary arithmetic operation 

 
val ::=  

 | fun x -> exp     functions are values 
 | n        integers are values 

 
n{v/x}   =  n     constants have no free vars. 
(e1 + e2){v/x}  = (e1{v/x} + e2{v/x})  substitute everywhere 

Object-level ‘+’ Meta-level ‘+’ 


